Современные представления о механизмах нейростимуляции при болезни Паркинсона

Обложка

Цитировать

Полный текст

Аннотация

Конкретные механизмы, лежащие в основе терапевтических эффектов нейростимуляции при болезни Паркинсона, остаются предметом дискуссий и интенсивного изучения. Понимание этих механизмов может послужить основой для разработки и подбора более эффективных параметров для облегчения симптомов паркинсонизма, способных максимизировать преимущества и уменьшить побочные эффекты хирургического вмешательства. В статье обсуждаются существующие модели двигательного контроля в базальных ганглиях в норме и при БП с точки зрения эффектов нейромодуляции (модель изменения импульсного потока, осцилляторная модель), также современные представления о возможных механизмах действия нейростимуляции подкорковых структур (deep brain stimulation, DBS): гипотеза деполяризационного блока, гипотеза нейронных помех, гипотеза синаптической депрессии, гипотеза синаптической модуляции, гипотеза DBS-астроцитов. Подробно рассмотрены такие факторы, как локализация DBS и параметры нейростимуляции, влияющие на клинический исход. Затронута тема нейропротективного эффекта DBS.

Об авторах

Екатерина Витальевна Бриль

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»; ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр имени А.И. Бурназяна»

Автор, ответственный за переписку.
Email: e.brill@inbox.ru
ORCID iD: 0000-0002-6524-4490

к.м.н., доцент, каф. неврологии, руководитель Федерального неврологического центра экстрапирамидных заболеваний и психического здоровья

Россия, Москва; 123098, Москва, ул. Маршала Новикова, д. 23

Елена Михайловна Белова

ФГБУН «Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук»

Email: e.brill@inbox.ru
ORCID iD: 0000-0002-8179-5807

к.б.н., в.н.с.

Россия, Москва

Алексей Сергеевич Седов

ФГБУН «Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук»

Email: e.brill@inbox.ru
ORCID iD: 0000-0003-3885-2578

к.б.н., с.н.с.

Россия, Москва

Анна Александровна Гамалея

ФГАУ «Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко»

Email: agamaleya@mail.ru
ORCID iD: 0000-0002-6412-8148

врач-невролог группы функциональной нейрохирургии

Россия, Москва

Анна Андреевна Поддубская

ФГАУ «Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко»

Email: anna.poddubsk@gmail.com
ORCID iD: 0000-0002-5776-3442

врач-невролог группы функциональной нейрохирургии

Россия, Москва

Наталия Владимировна Федорова

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования»

Email: Natalia.fedorova@list.ru
ORCID iD: 0000-0003-2168-2138

д.м.н., профессор каф. неврологии

Россия, Москва

Алексей Алексеевич Томский

ФГАУ «Национальный медицинский исследовательский центр нейрохирургии имени академика Н.Н. Бурденко»

Email: alexey_tomskiy@mail.ru
ORCID iD: 0000-0002-2120-0146

к.м.н., с.н.с, рук. группы функциональной нейрохирургии

Россия, Москва

Список литературы

  1. Espay A.J., Morgante F., Merola A. et al. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann. Neurol. 2018; 84(6): 797–811. doi: 10.1002/ana.25364
  2. Bari A.A., Fasano A., Munhoz R.P., Lozano A.M. Improving outcomes of subthalamic nucleus deep brain stimulation in Parkinson’s disease. Expert. Rev. Neurother. 2015; 15(10): 1151–1160. doi: 10.1586/14737175.2015.1081815
  3. Martić-Kehl M.I., Schibli R., Schubiger P.A. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39(9): 1492–1496. doi: 10.1007/s00259-012-2175-z
  4. Albin R.L., Young A.B., Penney J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989; 12(10): 366–375. doi: 10.1016/0166-2236(89)90074-x
  5. Wichmann T., DeLong M.R., Guridi J., Obeso J.A. Milestones in research on the pathophysiology of Parkinson’s disease. Mov. Disord. 2011; 26(6): 1032–1041. doi: 10.1002/mds.23695
  6. Залялова З.А. Глубокая стимуляция головного мозга. Каким образом она контролирует движения при болезни Паркинсона? Нейрохирургия. 2019; 21(3): 93–99. Zalyalova Z.A. Deep brain stimulation. How it controls movements in Parkinson’s disease? Russian journal of neurosurgery. 2019;21(3):93-99. (In Russ.) doi: 10.17650/1683-3295-2019-21-3-93-99
  7. Nambu A., Tachibana Y., Chiken S. Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? Basal Ganglia. 2015; 5(1): 1–6. doi: 10.1016/j.baga.2014.11.001
  8. Redgrave P., Rodriguez M., Smith Y. et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 2010; 11(11): 760–772. doi: 10.1038/nrn2915
  9. Chiken S., Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016; 22(3): 313–322. doi: 10.1177/1073858415581986
  10. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009; 32: 209–224. doi: 10.1146/annurev.neuro.051508.135603
  11. Montgomery E.B. Deep brain stimulation programming: principles and practice. Oxford; N.Y.; 2010. 179 p.
  12. Varela F., Lachaux J.P., Rodriguez E., Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001; 2(4): 229–239. doi: 10.1038/35067550
  13. Whitman J.C., Ward L.M., Woodward T.S. Patterns of cortical oscillations organize neural activity into whole-brain functional networks evident in the fMRI BOLD signal. Front. Hum. Neurosci. 2013; 7: 80. doi: 10.3389/fnhum.2013.00080
  14. Cassidy M., Mazzone P., Oliviero A. et. al. Movement-related changes in synchronization in the human basal ganglia. Brain. 2002; 125(Pt 6): 1235–1246. doi: 10.1093/brain/awf135
  15. Contarino M.F., Bour L.J., Bot M. et al. Tremor-specific neuronal oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul. 2012; 5(3): 305–314. doi: 10.1016/j.brs.2011.03.011
  16. Sharott A., Gulberti A., Zittel S. et al. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J. Neurosci. 2014; 34(18): 6273–6285. doi: 10.1523/JNEUROSCI.1803-13.2014
  17. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 2003; 18(4): 357–363. doi: 10.1002/mds.10358
  18. Hammond C., Bergman H., Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007; 30(7): 357–364. doi: 10.1016/j.tins.2007.05.004
  19. Brown P., Oliviero A., Mazzone P. et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 2001; 21(3): 1033–1038. doi: 10.1523/JNEUROSCI.21-03-01033.2001
  20. Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr. Opin. Neurobiol. 2007; 17(6): 656–664. doi: 10.1016/j.conb.2007.12.001
  21. Williams D., Tijssen M., Van Bruggen G. et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002; 125(Pt 7): 1558–1569. doi: 10.1093/brain/awf156
  22. Courtemanche R., Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J. Neurophysiol. 2005; 93(4): 2039–2052. doi: 10.1152/jn.00080.2004
  23. Crowell A.L., Ryapolova-Webb E.S., Ostrem J.L. et al. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain. 2012; 135(Pt 2): 615–630. doi: 10.1093/brain/awr332
  24. Tinkhauser G., Pogosyan A., Tan H. et. al. Beta burst dynamics in Parkinson‘s disease OFF and ON dopaminergic medication. Brain. 2017; 140(11): 2968–2981. doi: 10.1093/brain/awx252
  25. Ray N.J., Jenkinson N., Wang S. et al. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson‘s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp. Neurol. 2008; 213(1): 108–113. doi: 10.1016/j.expneurol.2008.05.008
  26. Quinn E.J., Blumenfeld Z., Velisar A. et al. Beta oscillations in freely moving Parkinson‘s subjects are attenuated during deep brain stimulation. Mov. Disord. 2015; 30(13): 1750–1758. doi: 10.1002/mds.26376
  27. Hirschmann J., Özkurt T.E., Butz M. et. al. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson‘s disease. Neuroimage. 2011; 55(3): 1159–1168. doi: 10.1016/j.neuroimage.2010.11.063
  28. Chen C.C., Hsu Y.T., Chan H.L. et al. Complexity of subthalamic 13-35 Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson‘s disease. Exp. Neurol. 2010; 224(1): 234–240. doi: 10.1016/j.expneurol.2010.03.015
  29. Johnson M.D., Miocinovic S., McIntyre C.C., Vitek J.L. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics. 2008; 5(2): 294–308. doi: 10.1016/j.nurt.2008.01.010
  30. Meissner W., Leblois A., Hansel D. et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005; 128(Pt 10): 2372–2382. doi: 10.1093/brain/awh616
  31. McIntyre C.C., Anderson R.W. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J. Neurochem. 2016; 139(Suppl 1): 338–345. doi: 10.1111/jnc.13649
  32. Tai C.H., Boraud T., Bezard E. et al. Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J. 2003; 17(13): 1820–1830. doi: 10.1096/fj.03-0163com
  33. Filali M., Hutchison W.D., Palter V.N. et. al. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res. 2004; 156(3): 274–281. doi: 10.1007/s00221-003-1784-y
  34. Welter M.L., Houeto J.L., Bonnet A.M. et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch. Neurol. 2004; 61(1): 89–96. doi: 10.1001/archneur.61.1.89
  35. Muthuraman M., Koirala N., Ciolac D. et al. Deep brain stimulation and L-DOPA therapy: concepts of action and clinical applications in Parkinson‘s disease. Front. Neurol. 2018; 9: 711. doi: 10.3389/fneur.2018.00711
  36. Lee K.H., Mosier E.M., Blaha C.D. Mechanisms of action of deep brain stimulation. In: Neuromodulation. Elsevier; 2018: 193–210. URL: https://linkinghub.elsevier.com/retrieve/pii/B9780128053539000176
  37. Benabid A.L., Benazzous A., Pollak P. Mechanisms of deep brain stimulation. Mov. Disord. 2002; 17(Suppl 3): S7–S74. doi: 10.1002/mds.10145
  38. Carron R., Chaillet A., Filipchuk A. et al. Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 2013; 7: 112. doi: 10.3389/fnsys.2013.00112
  39. Zucker R.S., Regehr W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002; 64: 355–405. doi: 10.1146/annurev.physiol.64.092501.114547
  40. Chiken S., Nambu A. Disrupting neuronal transmission: mechanism of DBS? Front. Syst. Neurosci. 2014; 8: 33. doi: 10.3389/fnsys.2014.00033
  41. Fenoy A.J., Goetz L., Chabardès S., Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci. Ther. 2014; 20(3): 191–201. doi: 10.1111/cns.12223
  42. Hamilton N.B., Attwell D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 2010; 11(4): 227–238. doi: 10.1038/nrn2803
  43. DiLorenzo D.J., Jankovic J., Simpson R.K. et al. Long-term deep brain stimulation for essential tremor: 12-year clinicopathologic follow-up. Mov. Disord. 2010; 25(2): 232–238. doi: 10.1002/mds.22935
  44. McIntyre C.C., Hahn P.J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 2010; 38(3): 329–337. doi: 10.1016/j.nbd.2009.09.022
  45. Hashimoto T., Elder C.M., Okun M.S. et al. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 2003; 23(5): 1916–1923. doi: 10.1523/JNEUROSCI.23-05-01916.2003
  46. Stefani A., Fedele E., Galati S. et al. Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann. Neurol. 2005; 57(3): 448–452. doi: 10.1002/ana.20402
  47. Montgomery E.B. Jr. Effects of GPi stimulation on human thalamic neuronal activity. Clin. Neurophysiol. 2006; 117(12): 2691–2702. doi: 10.1016/j.clinph.2006.08.011
  48. Windels F., Bruet N., Poupard A. et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur. J. Neurosci. 2000; 12(11): 4141–4146. doi: 10.1046/j.1460-9568.2000.00296.x
  49. Jech R, Urgosík D., Tintera J., Nebuzelský A. et al. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson‘s disease. Mov. Disord. 2001; 16(6): 1126–1132. doi: 10.1002/mds.1217
  50. Kang G., Lowery M.M. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013; 21(2): 244–253. doi: 10.1109/TNSRE.2013.2241791
  51. Jakobs M., Fomenko A., Lozano A.M., Kiening K.L. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med. 2019; 11(4): e9575. doi: 10.15252/emmm.201809575
  52. Tewari A., Jog R., Jog M.S. The striatum and subthalamic nucleus as independent and collaborative structures in motor control. Front. Syst. Neurosci. 2016; 10: 17. doi: 10.3389/fnsys.2016.00017
  53. Lévesque J.C., Parent A. GABAergic interneurons in human subthalamic nucleus. Mov. Disord. 2005; 20(5): 574–584. doi: 10.1002/mds.20374
  54. Rodriguez-Oroz M.C., Rodriguez M., Guridi J. et al. The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain. 2001; 124(Pt 9): 1777–1790. doi: 10.1093/brain/124.9.1777
  55. Hamani C., Florence G., Heinsen H. et al. Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro. 2017; 4(5): ENEURO.0140-17.2017. doi: 10.1523/ENEURO.0140-17.2017
  56. Herrington T.M., Cheng J.J., Eskandar E.N. Mechanisms of deep brain stimulation. J. Neurophysiol. 2016; 115(1): 19–38. doi: 10.1152/jn.00281.2015. Erratum in: J. Neurophysiol. 2020; 123(3): 1277.
  57. Baker K.B., Lee J.Y., Mavinkurve G. et al. Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Exp. Neurol. 2010; 222(2): 219–225. doi: 10.1016/j.expneurol.2009.12.030
  58. Nickl R.C., Reich M.M., Pozzi N.G. et al. Rescuing suboptimal outcomes of subthalamic deep brain stimulation in Parkinson disease by surgical lead revision. Neurosurgery. 2019; 85(2): E314–E321. doi: 10.1093/neuros/nyz018
  59. Koirala N., Serrano L., Paschen S. et al. Mapping of subthalamic nucleus using microelectrode recordings during deep brain stimulation. Sci. Rep. 2020; 10(1): 19241. doi: 10.1038/s41598-020-74196-5
  60. Hartmann C.J., Fliegen S., Groiss S.J. et al. An update on best practice of deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2019; 12: 1756286419838096. doi: 10.1177/1756286419838096
  61. Kluger B.M., Foote K.D., Jacobson C.E., Okun M.S. Lessons learned from a large single center cohort of patients referred for DBS management. Parkinsonism Relat. Disord. 2011; 17(4): 236–239. doi: 10.1016/j.parkreldis.2010.05.003
  62. Reck C., Maarouf M., Wojtecki L. et al.Clinical outcome of subthalamic stimu- lation in Parkinson’s disease is improved by intraoperative multiple trajectories microelectrode recording. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2012; 73(6): 377–386. doi: 10.1055/s-0032-1326957
  63. Tinkhauser G., Pogosyan A., Debove I. et. al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov. Disord. 2018; 33(1): 159–164. doi: 10.1002/mds.27215
  64. Neumann W.J., Turner R.S., Blankertz B. et al. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019; 16(1): 105–118. doi: 10.1007/s13311-018-00705-0
  65. Blumenfeld Z., Brontë-Stewart H. High frequency deep brain stimulation and neural rhythms in Parkinson‘s disease. Neuropsychol. Rev. 2015; 25(4): 384–397. doi: 10.1007/s11065-015-9308-7
  66. Blumenfeld Z., Koop M.M., Prieto T.E. et al. Sixty-hertz stimulation improves bradykinesia and amplifies subthalamic low-frequency oscillations. Mov. Disord. 2017; 32(1): 80–88. doi: 10.1002/mds.26837
  67. Fogelson N., Kühn A.A., Silberstein P. et al. Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neurosci. Lett. 2005; 382(1–2): 5–9. doi: 10.1016/j.neulet.2005.02.050
  68. Beudel M., Little S., Pogosyan A. et. al. Tremor reduction by deep brain stimulation is associated with gamma power suppression in Parkinson’s disease. Neuromodulation. 2015; 18(5): 349–354. doi: 10.1111/ner.12297
  69. Picillo M., Lozano A.M., Kou N. et al. Programming deep brain stimulation for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimul. 2016; 9(3): 425–437. doi: 10.1016/j.brs.2016.02.004
  70. Anderson D.N., Osting B., Vorwerk J. et al. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J. Neural. Eng. 2018; 15(2): 026005. doi: 10.1088/1741-2552/aaa14b
  71. Reich M.M., Steigerwald F., Sawalhe A.D. et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann. Clin. Transl. Neurol. 2015; 2(4): 427–432. doi: 10.1002/acn3.168
  72. Khoo H.M., Kishima H., Hosomi K. et al. Low-frequency subthalamic nucleus stimulation in Parkinson‘s disease: a randomized clinical trial. Mov. Disord. 2014; 29(2): 270–274. doi: 10.1002/mds.25810
  73. Su D., Chen H., Hu W. et al. Frequency-dependent effects of subthalamic deep brain stimulation on motor symptoms in Parkinson‘s disease: a meta-analysis of controlled trials. Sci. Rep. 2018; 8(1): 14456. doi: 10.1038/s41598-018-32161-3
  74. Anderson D.N., Duffley G., Vorwerk J. et al. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J. Neural. Eng. 2019; 16(1): 016026. doi: 10.1088/1741-2552/aae590
  75. Keane M., Deyo S., Abosch A. et al. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J. Neural. Eng. 2012; 9(4): 046005. doi: 10.1088/1741-2560/9/4/046005
  76. Anderson C.J., Anderson D.N., Pulst S.M. et al. Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes. Brain Stimul. 2020; 13(4): 1040–1050. doi: 10.1016/j.brs.2020.03.017
  77. Habets J.G.V., Heijmans M., Kuijf M.L. et al. An update on adaptive deep brain stimulation in Parkinson‘s disease. Mov. Disord. 2018; 33(12): 1834–1843. doi: 10.1002/mds.115
  78. Little S., Pogosyan A., Neal S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013; 74(3): 449–457. doi: 10.1002/ana.23951
  79. Syrkin-Nikolau J., Koop M.M., Prieto T. et al. Subthalamic neural entropy is a feature of freezing of gait in freely moving people with Parkinson‘s disease. Neurobiol. Dis. 2017; 108: 288–297. doi: 10.1016/j.nbd.2017.09.002
  80. Golshan H.M., Hebb A.O., Hanrahan S.J. et al. A hierarchical structure for human behavior classification using STN local field potentials. J. Neurosci. Meth. 2018; 293: 254–263. doi: 10.1016/j.jneumeth.2017.10.001
  81. Piña-Fuentes D., Beudel M., Little S. et al. Adaptive deep brain stimulation as advanced Parkinson‘s disease treatment (ADAPT study): protocol for a pseudo-randomised clinical study. BMJ Open. 2019; 9(6): e029652. doi: 10.1136/bmjopen-2019-029652
  82. Wallace B.A., Ashkan K., Heise C.E. et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain. 2007; 130(Pt 8): 2129–2145. doi: 10.1093/brain/awm137
  83. Ho D.X., Tan Y.C., Tan J. et al. High-frequency stimulation of the globus pallidus interna nucleus modulates GFRα1 gene expression in the basal ganglia. J. Clin. Neurosci. 2014; 21(4): 657–660. doi: 10.1016/j.jocn.2013.05.024
  84. Ashkan K., Rogers P., Bergman H., Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 2017; 13(9): 548–554. doi: 10.1038/nrneurol.2017.105
  85. Xie T., Bloom L., Padmanaban M. et al. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J. Neurol. Neurosurg. Psychiatry. 2018; 89(9): 989–994. doi: 10.1136/jnnp-2018-318060

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема основных проекций внутри системы двигательного контроля в норме (А) и при БП (B). С — первоначальная схема проекций [4]; D — обновлённая схема проекций внутри системы двигательного контроля, показывающая более сложную организацию и наличие реципрокных связей, которые могут вовлекаться в поддержание патологических осцилляций внутри системы (адаптировано по [8]). SNr — ретикулярная часть чёрной субстанции; SNc — компактная часть чёрной субстанции.

Скачать (818KB)
3. Рис. 2. Схемы взаимодействия внутри систем двигательного контроля для модели изменения импульсного потока (А) и осцилляторной модели (В). Ширина стрелок отражает мощность передачи сигнала между структурами.

Скачать (506KB)
4. Рис. 3. Схема основных эффектов DBS на клеточном и синаптическом уровнях. Адаптировано по [51]. 1 — захват аксональных ортодромных потенциалов действия (ПД); 2 — антидромные ПД сталкиваются с собственными ортодромными ПД; 3 — возбуждение тормозящих и возбуждающих афферентных волокон, проецирующихся к нейронам в мишени; 4 — возбуждение проходящих волокон, проецирующихся к мишени; 5 — выброс нейротрансмиттеров; 6 — эффекты на ненейрональные клетки в микроокружении контакта; 7 — эффекты на гематоэнцефалический барьер.

Скачать (551KB)
5. Рис. 4. Пример перистимульной спектрограммы записей локальных потенциалов STN пациента с БП. А — на спектрограмме заметны десинхронизация β-осцилляций (13–17 Гц) и синхронизация γ-осцилляций (60–70 Гц) при выполнении двигательных тестов. По оси абсцисс — время, с; по оси ординат — частота, Гц; цветом показана амплитуда спектральной мощности, %. В — ректифицированный сигнал электромиограммы мышц руки пациента (собственные данные). По оси абсцисс — время, с; по оси ординат — амплитуда, мкВ. Ширина стрелок отражает мощность передачи сигнала между структурами.

Скачать (96KB)
6. Рис. 5. Время изменения симптомов при стимуляции.

Скачать (471KB)

© Бриль Е.В., Белова Е.М., Седов А.С., Гамалея А.А., Поддубская А.А., Федорова Н.В., Томский А.А., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».