Morphology and pathogenesis of white matter changes in chronic cerebrovascular disease

Cover Page

Cite item

Full Text

Abstract

This review contains up-to-date information on the fundamentals and clinical aspects of white matter disease in chronic progressive cerebrovascular disease with cognitive impairment, the leading risk factors for which are hypertension and cerebral atherosclerosis. Highly informative methods of neuroimaging have contributed significantly to the study of this problem, confirming the important role of white matter changes in the development and progression of cognitive impairment. The full range of the morphological changes in white matter, typical of vascular encephalopathy and cognitive dysfunction, is presented. Chronic hypoperfusion and white matter ischaemia play a leading role in the pathogenesis of white matter changes in vascular dementia development, but alternative hypotheses are also emerging. Further fundamental morphological and clinical studies will help to determine the leading mechanisms of white matter damage in patients with vascular and other age-related forms of dementia. This is necessary for the development of effective methods of treatment and prevention.

About the authors

Tatyana S. Gulevskaya

Research Center of Neurology

Email: anufriev@neurology.ru
ORCID iD: 0000-0003-2970-8136

D. Sci. (Med.), Prof., chief researcher, Laboratory of neuromorphology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Pavel L. Anufriev

Research Center of Neurology

Author for correspondence.
Email: anufriev@neurology.ru
ORCID iD: 0000-0002-5327-2275

Cand. Sci. (Med.), senior researcher, Laboratory of neuromorphology

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Мarine М. Tanashyan

Research Center of Neurology

Email: anufriev@neurology.ru
ORCID iD: 0000-0002-5883-8119

D. Sci. (Med.), Prof., Corresponding member of RAS, Deputy Director for science, Head, 1st Neurological department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

References

  1. Pantoni L., Gorelick P. Cerebral small vessel disease. Cambridge; 2014. 371 р. doi: 10.1017/CBO9781139382694
  2. Ostergaard L., Engedal T., Moreton F. et al. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. J. Cereb. Blood Flow Metab. 2016; 36(2): 302–325. doi: 10.1177/0271678X15606723
  3. Добрынина Л.А. Нейроваскулярное взаимодействие и церебральная перфузия при старении, церебральной микроангиопатии и болезни Альцгеймера. Анналы клинической и экспериментальной неврологии. 2018; (12): 87–94. Dobrynina L.A. Neurovascular coupling and cerebral perfusion in aging, cerebral microangiopathy and Alzheimer’s disease. Annals of Clinical and Experimental Neurology. 2018; (12): 87–94. (In Russ.) doi: 10.25692/ACEN.2018.5.11
  4. Калашникова Л.А., Гулевская Т.С., Добрынина Л.А. Актуальные проблемы патологии головного мозга при церебральной микроангиопатии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118(2): 90–99. Kalashnikova L.A., Gulevskaya T.S., Dobrynina L.A. Actual problems of brain pathology in cerebral microangiopathy. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2018; 118(2): 90–99. (In Russ.) doi: 10.17116/jnevro20181182190-99
  5. Гнедовская Е.В., Добрынина Л.А., Кротенкова М.В., Сергеева А.Н. МРТ в оценке прогрессирования церебральной ангиопатии. Анналы клинической и экспериментальной неврологии. 2018; 12(1): 61–68. Gnedovskaya E.V., Dobrynina L.A., Krotenkova M.V., Sergeeva A.N. MRI in the assessment of cerebral small vessel disease. Annals of Clinical and Experimental Neurology. 2018; 12(1): 61–68. (In Russ.) doi: 10.25692/ACEN.2018.1.9
  6. Суслина З.А., Гулевская Т.С., Максимова М.Ю., Моргунов В.А. Нарушения мозгового кровообращения. Диагностика, лечение, профилактика. М.; 2016. 536 с. Suslina Z.A, Gulevskaya T.S., Maksimova M.Yu., Morgunov V.A. Cerebrovascular diseases: diagnosis, treatment, prevention. Moscow; 2016. 536 p. (In Russ.)
  7. Верещагин Н.В., Калашникова Л.А., Гулевская Т.С., Миловидов Ю.К. Болезнь Бинсвангера и проблема сосудистой деменции: к 100-летию первого описания. Журнал неврологии и психиатрии им. С.С. Корсакова. 1995; (1): 98–103. Vereshchagin N.V., Kalashnikova L.A., Gulevskaia T.S., Milovidov Yu.K. Binswanger’s disease and the problem of vascular dementia: on the centenary of its first description. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 1995; (1): 98–103. (In Russ.)
  8. Калашникова Л.А., Гулевская Т.С. Сосудистая деменция бинсвангеровского типа: клинико-морфологическое исследование. Журн. неврол. и психиатр. им. С.С. Корсакова. Приложение «Инсульт», спецвыпуск. 2007: 364. Kalashnikova L.A., Gulevskaya T.S. Vascular dementia of the Binswanger type: clinic-morphological study. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. Prilozhenie «Insult» (special issue). 2007: 364. (In Russ.)
  9. Шмырёв В.И., Мартынов А.И., Гулевская Т.С. и др. Поражение белого вещества головного мозга (лейкоареоз): частота, факторы риска, патогенез, клиническая значимость. Неврологический журнал. 2000; 5(3): 47–54. Shmyryov V.I., Martynov A.I., Gulevskaya T.S. et al. White matter lesions (leukoaraiosis): incidence, risk factors, pathogenesis, and clinical implication. Nevrologicheskiy Zhurnal. 2000; 5(3): 47–54. (In Russ.)
  10. Яхно Н.Н., Левин О.С., Дамулин И.В. Сопоставление клинических и МРТ-данных при дисциркуляторной энцефалопатии. Сообщение 2: когнитивные нарушения. Неврологический журнал. 2001; 6(3): 10–19. Yahno N.N., Levin O.S., Damulin I.V. Comparison of clinical and MRI data in discirculatory encephalopathy. Message 2: cognitive impairment. Nevrologicheskiy Zhurnal. 2001; 6(3): 10–19. (In Russ.)
  11. Schmidt R., Petrovic K., Ropele S. et al. Progression of leukoaraiosis and cognition. Stroke. 2007; 38(9): 2619–2625. doi: 10.1161/STROKEAHA.107.489112
  12. Black S., Gao F., Bilbao J. Understanding white matter disease: ima- ging-pathological correlations in vascular cognitive impairment. Stroke. 2009; 40(3 suppl): 48–52. doi: 10.1161/STROKEAHA.108.537704
  13. Pantoni L., Gorelick P. Advances in vascular cognitive impairment 2010. Stroke. 2011; 42(2): 291–293. doi: 10.1161/STROKEAHA.110.605097
  14. Merino J. White matter hyperintensities on magnetic resonance imaging: what is a clinician to do? Mayo Clin. Proc. 2019; 94(3): 380–382. doi: 10.1016/j.mayocp.2019.01.016
  15. Wardlaw J., Smith E., Biessels G. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; 12(8): 822–838. doi: 10.1016/S1474-4422(13)70124-8
  16. Wardlaw J., Smith C., Dichgans M. Mechanisms underlying sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013; 12(6): 532–559. doi: 10.1016/S1474-4422(13)70060-7
  17. Shim Y., Yang D., Roe C. et al. Pathological correlates of white matter hypertensities on MRI. Dement. Geriatr. Cogn. Disord. 2015; 39(1–2): 92–104. doi: 10.1159/000366411
  18. Wardlaw J.M. William M. Feinberg Award for excellence in clinical stroke: small vessel disease; a big problem, but fixable. Stroke. 2018; 49(7): 1770–1775. doi: 10.1161/STROKEAHA.118.021184
  19. Liu Y., Dong Y., Lyu P. et al. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Clin. Med. J. (Engl). 2018; 131(5): 615–619. doi: 10.4103/0366-6999.226069
  20. Сuadrado-Godia E., Dwivedi P., Sharma S. et al. Cerebral Small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J. Stroke. 2018; 20(3): 302–320. doi: 10.5853/jos.2017.02922
  21. Li Q., Yang Y., Res C. et al. Cerebral small vessel disease. Cell Transplant. 2018; 27(2): 1711–1722. doi: 10.1177/0963689718795148
  22. Hakim A. Small vessel disease. Front. Neurol. 2019; 10: 1020. doi: 10.3389/fneur.2019.01020
  23. Gurol M., Biessels G., Polimeni J. Advanced neuroimaging to unravel mechanisms of cerebral small vessel diseases. Stroke. 2020; 51(1): 29–37. doi: 10.1161/STROKEAHA.119.024149
  24. Pasi M., Cordonnier C. Clinical relevance of cerebral small vessel diseases. Stroke. 2020; 51(1): 47–53. doi: 10.1161/STROKEAHA.119.024148
  25. Meissner A. Hypertension and the brain: a risk factor for more than heart disease. Cerebrovasc. Dis. 2016; 42(3–4): 255–262. doi: 10.1159/000446082
  26. Гулевская Т.С., Моргунов В.А. Патологическая анатомия нарушений мозгового кровообращения при атеросклерозе и артериальной гипертонии. Руководство для врачей. М.; 2009. 295 с. Gulevskaya T.S., Morgunov V.A. Pathological anatomy of cerebral circulation disorders in atherosclerosis and arterial hypertension. A guide for doctors. Moscow; 2009. 295 p. (In Russ.).
  27. Колтовер А.Н., Людковская И.Г., Гулевская Т.С. и др. Гипертоническая ангиоэнцефалопатия в патологоанатомическом аспекте. Журнал невропатологии и психиатрии им. С.С. Корсакова. 1984; 84(7): 1016–1020. Koltover A.N., Liudkovskaia I.G., Gulevskaia T.S. et al. Hypertonic angioencephalopathy in its pathomorphological aspect. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova. 1984; 84(7): 1016–1020. (In Russ.)
  28. Колтовер А.Н., Моргунов В.А., Людковская И.Г. и др. Гипертоническая ангиопатия головного мозга. Архив патологии. 1986; 48(11): 34–39. Koltover A.N., Morgunov V.A., Liudkovskaya I.G. et al. Hypertensive angiopathy of the brain. Arkhiv Patologii. 1986; 48(11): 34–39. (In Russ.)
  29. Людковская И.Г., Гулевская Т.С., Моргунов В.А. Деструктивные изменения средней оболочки интрацеребральных артерий при артериальной гипертензии. Архив патологии. 1982; 44(9): 66–72. Liudkovskaia I.G., Gulevskaia T.S., Morgunov V.A. Destructive changes in the media of intracerebral arteries in arterial hypertension. Arkhiv Patologii. 1982; 44(9): 66–72. (In Russ.)
  30. Верещагин Н.В., Моргунов В.А., Гулевская Т.С. Патология головного мозга при атеросклерозе и артериальной гипертонии. М.; 1997. 288 с. Vereshchagin N.V., Gulevskaya T.S., Morgunov V.A. Brain pathology in atherosclerosis and arterial hypertension. Moscow; 1997. 288 p. (In Russ.)
  31. Гулевская Т.С., Людковская И.Г. Артериальная гипертония и патология белого вещества головного мозга. Архив патологии. 1992; (2): 53–59. Gulevskaya T.S., Liudkovskaia I.G. Arterial hypertension and pathology of cerebral white matter. Arkhiv Patologii. 1992; (2): 53–59. (In Russ.)
  32. Гулевская Т.С., Людковская И.Г. Особенности изменений сосудов коры и белого вещества полушарий головного мозга при артериальной гипертонии. Журнал невропатологии и психиатрии им. С.С. Корсакова. 1985; (7): 979–985. Gulevskaia T.S., Liudkovskaia I.G. Features of changes in vessels of the cortex and white matter of the cerebral hemispheres in arterial hypertension. Zh. Nevro- patol. Psikhiatr. Im. S. S. Korsakova. 1985; 85(7): 979–985. (In Russ.)
  33. Людковская И.Г., Гулевская Т.С. К морфологии и патогенезу изменений белого вещества полушарий головного мозга при артериальной гипертонии. Журнал невропатологии и психиатрии им. С.С. Корсакова. 1988; 88(7): 25–32. Liudkovskaya I.G., Gulevskaia T.S. Morphology and pathogenesis of changes in the substantia alba of the cerebral hemispheres in arterial hypertension. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova. 1988; 88(7): 25–32. (In Russ.)
  34. Moody D.M., Brown W.R., Challa V.R. et al. Periventricular venous collagenosis: association with leukoaraiosis. Radiology. 1995; 194(2): 469–476. doi: 10.1148/radiology.194.2.7824728
  35. Калашникова Л.А. Субкортикальная артериосклеротическая энцефалопатия (клинико-морфологическое исследование). Неврологический журнал. 1998; 3(2): 7–13. Kalashnikova L.A. Subcortical arteriosclerotic encephalopathy (clinico-morphological examination). Nevrologicheskiy Zhurnal. 1998; 3(2): 7–13. (In Russ.)
  36. Левина Г.Я., Гулевская Т.С. Прогрессирующая субкортикальная артериосклеротическая энцефалопатия (болезнь Бинсвангера). Архив патологии. 1985; 47(8): 70–73. Levina G.Ya., Gulevskaia T.S. Progressive subcortical arteriosclerotic encephalopathy (Binswanger’s disease). Arkhiv Patologii. 1985; 47(8): 70–73. (In Russ.)
  37. Babikian V., Ropper A. Binswanger’s disease: a review. Stroke. 1987; 18(1): 2–12. doi: 10.1161/01.str.18.1.2
  38. Roman G. Senile dementia of the Binswanger type. A vascular form of dementia in the elderly. JAMA. 1987; 258(13): 1782–1788. doi: 10.1001/jama.1987.03400130096040
  39. Fisher C. Binswanger’s encephalopathy: a review. J. Neurol. 1989; 236(2): 65–79. doi: 10.1007/BF00314400
  40. Yamanouchi H., Sugiura S., Schimada H. Loss of nerve fibres in the corpus callosum of progressive subcortical vascular encephalopathy. J. Neurol. 1990; 237(1): 39–41. doi: 10.1007/BF00319666
  41. Yamauchi H., Fukuyama H., Shio H. Corpus callosum atrophy in patients with leukoaraiosis may indicate global cognitive impairment. Stroke. 2000; 31(7): 1515–1520. doi: 10.1161/01.str.31.7.1515
  42. Hachinski V. Binswanger’s disease: neither Binswanger’s nor a disease. J. Neurol. Sci. 1991; 103(1): 1. doi: 10.1016/0022-510x(91)90274-b
  43. McQuinn B.A., O’Leary D.H. White matter lucencies on computed tomography, subacute arteriosclerotic encephalopathy (Binswanger’s disease), and blood pressure. Stroke. 1987; 18(5): 900–905. doi: 10.1161/01.str.18.5.900
  44. Hachinski V., Potter P., Merskey H. Leuko-araiosis. Arch. Neurol. 1987; 44(1): 21–23. doi: 10.1001/archneur.1987.00520130013009
  45. Pantoni L. Leukoaraiosis: from an ancient term to an actual marker of poor prognosis. Stroke. 2008; 39(5): 1401–1403. doi: 10.1161/STROKEAHA.107.505602
  46. Hase Y., Horsburgh K., Ihara M., Kalaria R. White matter degeneration in vascular and other ageing — related dementias. J. Neurochem. 2018; 144(5): 617–633. doi: 10.1111/jnc.14271
  47. Bastin M., Clayden J., Pattie A. et al. Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiol. Aging. 2009; 30(1): 125–136. doi: 10.1016/j.neurobiolaging.2007.05.013
  48. Dai W., Lopez O., Carmichael O. Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke. 2008; 39(2): 349–354. doi: 10.1161/STROKEAHA.107.495457
  49. Meguro K., Hatazawa J., Yamaguchi T. et al. Cerebral circulation and oxygen metabolism associated with subclinical periventricular hyperintensity as shown by magnetic resonance imaging. Ann. Neurol. 1990; 28(3): 378–383. doi: 10.1002/ana.410280313
  50. Wallin A., Gottfries C., Karlsson I., Svennerholm L. Decreased myelin lipid in Alzheimer,s disease and vascular dementia. Acta Neurol. Scand. 1989; 80(4): 319–323. doi: 10.1111/j.1600-0404.1989.tb03886.x
  51. Lin J., Tomimoto H., Akiguchi I. et al. Vascular cell components of the medullary arteries in Binswanger’s disease brains. A morphometric and immunoelectron microscopic study. Stroke. 2000; 31(8): 1838–1842. doi: 10.1161/01.str.31.8.1838
  52. Brown W., Moody D., Thore C. et al. Microvascular changes in the white matter in dementia. J. Neurol. Sci. 2009; 283(1–2): 28–31. doi: 10.1016/j.jns.2009.02.328
  53. Goldberg M., Ransom R. New light on white matter. Stroke. 2003; 34(3): 330–332. doi: 10.1161/01.str.0000054048.22626.b9
  54. Jones D., Lythgoe D., Horsfield M. et al. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke. 1999; 30(2): 393–397. doi: 10.1161/01.str.30.2.393
  55. Okeda R., Arima K., Kawai M. Arterial changes in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter. Examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke. 2002; 33(11): 2565–2569. doi: 10.1161/01.str.0000032620.91848.1c
  56. Fazekas F., Kleinert R., Offenbacher H. et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993; 43(9): 1683–1689. doi: 10.1212/wnl.43.9.1683
  57. Fernando M., Simpson J., Matthews F. et al. White matter lesions in an unselected cohort of the elderly. Molecular pathology suggests origin from chronic hypoperfusion injury. Stroke. 2006; 37(6): 1391–1398. doi: 10.1161/01.STR.0000221308.94473.14
  58. De Reuck J., Crevits L., De Coster W. et al. Pathogenesis of Binswanger chronic progressive subcortical encephalopathy. Neurology. 1980; 30(9): 920–928. doi: 10.1212/wnl.30.9.920
  59. Oishi M., Mochizuki Y., Takasu T. Blood flow differences between leukoaraiosis with and without lacunar infarction. Can. J. Neurol. Sci. 1998; 25(1): 70–75. doi: 10.1017/s0317167100033527
  60. Akiguchi I., Tomimoto H., Suenaga T. et al. Alterations in glia and axons in brains of Binswanger’s disease patients. Stroke. 1997; 28(7): 1423–1429. doi: 10.1161/01.str.28.7.1423
  61. Rosenberg G., Sullivan N., Esiri M. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke. 2001; 32(5): 1162–1168. doi: 10.1161/01.str.32.5.1162
  62. Nakaji K., Ihara M., Takahashi C. et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke. 2006; 37(11): 2816–2823. doi: 10.1161/01.STR.0000244808.17972.55
  63. Candelario-Jalil E., Thompson J., Taheri S. et al. Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke. 2011; 42(5): 1345–1350. doi: 10.1161/STROKEAHA.110.600825
  64. Jung K., Stephens K., Yochim K. et al. Heterogenety of cerebral white matter lesions and clinical correlates in older adults. Stroke. 2021; 52(2): 620–630. doi: 10.1161/STROKEAHA.120.031641
  65. Yu X., Yin X., Hong H. et al. Increased extracellular fluid is associated with white matter fiber degeneration in CADASIL: in vivo evidence from diffusion magnetic resonance imaging. Fluids Barriers CNS. 2021; 18(1): 29. doi: 10.1186/s12987-021-00264-1
  66. Bradley W.G., Whittemore A.R., Watanabe A.S. et al. Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. Am. J. Neuro- radiol. 1991; 12(1): 31–39.
  67. Maclullich A., Ferguson K., Reid L. et al. Higher systolic blood pressure is associated with increased water diffusivity in normal-appearing white matter. Stroke. 2009; 40(12): 3869–3871. doi: 10.1161/STROKEAHA.109.547877
  68. Zhang R., Huang P., Jiaerken Y. et al. Venous disruption affects white matter integrity through increased interstitial fluid in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 2021; 41(1): 157–165. doi: 10.1177/0271678X20904840
  69. Mestre H., Kostrikov S., Mehta R., Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci (Lond). 2017; 131(17): 2257–2274. doi: 10.1042/CS20160381
  70. Wardlaw J., Benveniste H., Nedergaard M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 2020; 16(3): 137–153. doi: 10.1038/s41582-020-0312-z
  71. Huang P., Zhang R., Jiaerken Y. et al. Deep white matter hyperintensity is associated with the dilation of perivascular space. J. Cereb. Blood. Flow. Metab. 2021; 41(9): 2370–2380. doi: 10.1177/0271678X211002279
  72. Weller R., Hawkes C., Kalaria R. et al. White matter changes in dementia: role of impaired drainage of interstitial fluid. Brain Pathol. 2015; 25(1): 63–78. doi: 10.1111/bpa.12218
  73. Ihara M., Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke. 2016; 47(2): 554–560. doi: 10.1161/STROKEAHA.115.009627
  74. Poggesi A., Pasi M., Pescini F. et al. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J. Cereb. Blood Flow Metab. 2016; 36(1): 72–94. doi: 10.1038/jcbfm.2015.116
  75. Rosenberg G., Wallin A., Wardlaw J. et al. Consensus statement for diagnosis of subcortical small vessel disease. J. Cereb. Blood Flow Metab. 2016; 36(1): 6–25. doi: 10.1038/jcbfm.2015.172
  76. Dalkara T. Pericytes: a novel target to improve success of recanalization therapies. Stroke. 2019; 50(10): 2985–2991. doi: 10.1161/STROKEAHA.118.023590
  77. Kalman J., Juhasz A., Csaszar A. et al. Increased apolipoprotein E4 allele frequency is associated with vascular dementia in the Hungarian population. Acta Neurol. Scand. 1998; 98(3): 166–168. doi: 10.1111/j.1600-0404.1998.tb07288.x
  78. Godin O., Tzourio C., Maillard P. et al. Apolipoprotein E genotype is related to progression of white matter lesion load. Stroke. 2009; 40(10): 3186–3190. doi: 10.1161/STROKEAHA.109.555839
  79. Amar K., Macgowan S., Wilcock G. et al. Are genetic factors important in the aetiology of leukoaraiosis? Results from a memory clinic population. Int. J. Geriatr. Psychiatry. 1998; 13(9): 585–590. doi: 10.1002/(sici)1099-1166(199809)13:9 < 585::aid-gps825 > 3.0.co;2-0
  80. Chabriat H., Vahedi K. et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet. 1995; 346(8980): 934–939. doi: 10.1016/s0140-6736(95)91557-5
  81. Abib-Samii P., Brice G., Martin R., Markus H. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype. Study in 200 consecutively recruited individuals. Stroke. 2010; 41(4): 630–634. doi: 10.1161/STROKEAHA.109.568402
  82. Jouvent E., Duering M., Chabriat H. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: lessons from neuroimaging. Stroke. 2020; 51(1): 21–28. doi: 10.1161/STROKEAHA.119.024152
  83. Максимова М.Ю., Гулевская Т.С. Лакунарный инсульт. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119(8, вып. 2): 13–27. Maksimova M.Yu., Gulevskaya T.S. Lacunar stroke. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2019; 119(8, Vyp. 2): 13–27. (In Russ.) doi: 10.17116/jnevro201911908213
  84. Arboix A., Blanco-Rojas L., Marti-Vilalta JL. Advancements in understanding the mechanisms of symptomatic lacunar ischemic stroke: translation of knowledge to prevention strategies. Expert Rev. Neurother. 2014; 14(3): 261–276. doi: 10.1586/14737175.2014.884926
  85. Ungvary Z., Tarantini S., Kirpatrick A. et al. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am. J. Physiol. Heart Circ. Physiol. 2017; 312(6): H1128–H1143. doi: 10.1152/ajpheart.00780.2016
  86. Duperron M., Tzourio C., Sargurupremraj M. et al. Burden of dilated perivascular spaces, an emerging marker of cerebral small vessel disease, is heritable. Stroke. 2018; 49(2): 282–287. doi: 10.1161/STROKEAHA.117.019309
  87. Riba-Liena J., Jimenez-Balado J., Castane X. et al. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke. 2018; 49(5): 1279–1281. doi: 10.1161/STROKEAHA.118.020163
  88. Ishii N., Nishihara Y., Imamura T. Why do frontal lobe symptoms predominate in vascular dementia with lacunes? Neurology. 1986; 36(3): 340–345. doi: 10.1212/wnl.36.3.340
  89. Norrving B. Evolving concept of small vessel disease through brain imaging. J. Stroke. 2015; 17(2): 94–100. doi: 10.5853/jos.2015.17.2.94
  90. Gupta A., Giambrone A., Gialdini G. et al. Silent brain infarction and risk of future stroke: a systematic review and meta-analysis. Stroke. 2016; 47(3): 719–725. doi: 10.1161/STROKEAHA.115.011889
  91. Loos C., Makin S., Staals J. et al. Long-term morphological changes of symptomatic lacunar infarcts and surrounding white matter on structural magnetic resonance imaging. Stroke. 2018; 49(5): 1183–1188. doi: 10.1161/STROKEAHA.117.020495
  92. Hinman J., Lee M., Tung S. et al. Molecular disorganization of axons adjacent to human lacunar infarcts. Brain. 2015; 138(Pt 3): 736–745. doi: 10.1093/brain/awu398
  93. Gregoire S., Brown M., Kallis C. et al. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke. 2010; 41(1): 184–186. doi: 10.1161/STROKEAHA.109.568469
  94. Staals J., Oostenbrugge R., Knottnerus I. et al. Brain microbleeds relate to higher ambulatory blood pressure levels in first-ever lacunar stroke patiens. Stroke. 2009; 40(10): 3264–3268. doi: 10.1161/STROKEAHA.109.558049
  95. Thijs V., Lemmens R., Schoofs C. et al. Microbleeds and the risk of recurrent stroke. Stroke. 2010; 41(9): 2005–2009. doi: 10.1161/STROKEAHA.110.588020
  96. Benjamin P., Tippier S., Lawrence A. et al. Lacunar infarcts, but not perivascular spaces, are predictors of cognitive decline in cerebral small-vessel disease. Stroke. 2018; 49(3): 586–593. doi: 10.1161/STROKEAHA.117.017526
  97. Potter G., Doubal F., Jackson C. et al. Enlarged perivascular spaces and cerebral small vessel disease. Int. J. Stroke. 2015; 10(3): 376–381. doi: 10.1111/ijs.12054
  98. Brown R., Benveniste H., Bkack S. et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc. Res. 2018; 114(11): 1462–1473. doi: 10.1093/cvr/cvy113
  99. Geurts L., Zwanenburg J., Klijn C. et al. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study. Stroke. 2019; 50(1): 62–68. doi: 10.1161/STROKEAHA.118.022516
  100. Esten-Lyons D., Woltjer R., Kaye J. et al. Neuropathologic basis of white matter hypertensity accumulation with advanced age. Neurology. 2013; 81(11): 977–983. doi: 10.1212/WNL.0b013e3182a43e45
  101. Hasan T., Barrett K., Brott T. et al. Severity of white matter hyperintensities and effects on all-cause mortality in the Mayo Clinic Florida Familian Cerebrovascular Diseases Registry. Mayo Clin. Proc. 2019; 94(3): 408–416. doi: 10.1016/j.mayocp.2018.10.024

Copyright (c) 2022 Gulevskaya T.S., Anufriev P.L., Tanashyan М.М.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies