Theta-gamma phase-amplitude coupling: physiological basics, analysis methods, and perspectives of translation into clinical practice

Cover Page

Cite item

Full Text

Abstract

Studying rhythmic neural synchronization (cross-frequency coupling in various ranges) is an emerging topic in present-day neurophysiology. One of the best-studied cross-frequency couplings is theta-gamma phase-amplitude coupling that contributes to the cognitive function and may vary in patients with several conditions associated with cognitive impairment. Changes in theta-gamma coupling can be registered in a wide range of diseases associated with cognitive decline.

The review covers the physiological basics of theta-gamma coupling, its registration and calculation, correlation with cognitive test results in healthy volunteers, and changes in patients. We have discussed the results of the preliminary studies of frequency-dependent non-invasive brain stimulation based on theta-gamma coupling.

About the authors

Alexandra G. Poydasheva

Research Center of Neurology

Email: alexandra.poydasheva@gmail.com
ORCID iD: 0000-0003-1841-1177

junior researcher, neurologist of Non-invasive neuromodulation group, Institute of Neurorehabilitation

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Ilya S. Bakulin

Research Center of Neurology

Email: bakulinilya@gmail.com
ORCID iD: 0000-0003-0716-3737

Cand. Sci. (Med.), researcher, Head, Non-invasive neuro- modulation group, Institute of Neurorehabilitation

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Dmitry O. Sinitsyn

Research Center of Neurology

Email: d_sinitsyn@mail.ru
ORCID iD: 0000-0001-9951-9803

Cand. Sci. (Phys.-Math.), senior researcher, research engineer, Group of consciousness and memory studies, Institute of Neurorehabilitation

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Alfiya H. Zabirova

Research Center of Neurology

Email: alfijasabirowa@gmail.com
ORCID iD: 0000-0001-8544-3107

postgraduate student, Non-invasive neuromodulation group, Institute of Neurorehabilitation, neurologist

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Dmitry Yu. Lagoda

Research Center of Neurology

Email: dmitrylagoda.doc@gmail.com
ORCID iD: 0000-0002-9267-8315

Cand. Sci. (Med.), junior researcher, Non-invasive neuromodulation group, Institute of Neurorehabilitation

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Natalia A. Suponeva

Research Center of Neurology

Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362

D. Sci. (Med.), Corresponding Member of RAS, Director. Institute of Neurorehabilitation

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Michael A. Piradov

Research Center of Neurology

Author for correspondence.
Email: mpi711@gmail.com
ORCID iD: 0000-0002-6338-0392

D. Sci (Med.), Prof., Academician of RAS, Director

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

References

  1. Abubaker M., Al Qasem W., Kvašňák E. Working memory and cross-frequency coupling of neuronal oscillations. Front. Psychol. 2021; 12: 756661. doi: 10.3389/fpsyg.2021.756661
  2. Grover S., Nguyen J.A., Reinhart R.M.G. Synchronizing brain rhythms to improve cognition. Annu. Rev. Med. 2021; 72: 29–43. doi: 10.1146/annurev-med-060619-022857
  3. Colgin L.L. Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 2015; 31: 45–50. doi: 10.1016/j.conb.2014.08.001
  4. Lisman J.E., Jensen O. The theta-gamma neural code. Neuron. 2013; 77(16): 1002–1016. doi: 10.1016/j.neuron.2013.03.007
  5. Colgin L.L., Denninger T., Fyhn M. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009: 462(7271): 353–357. doi: 10.1038/nature08573
  6. López-Madrona V.J., Pérez-Montoyo E., Álvarez-Salvado E. et al. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. Elife. 2020; 9: e57313. doi: 10.7554/eLife.57313
  7. Siapas A.G., Lubenov E.V., Wilson M.A. Prefrontal phase locking to hippocampal theta oscillations. Neuron. 2005; 46(1): 141–151. doi: 10.1016/j.neuron.2005.02.028
  8. Tort A.B., Scheffer-Teixeira R., Souza B.C. et al. Theta-associated high-frequency oscillations (110–160 Hz) in the hippocampus and neocortex. Prog. Neurobiol. 2013; 100: 1–14. doi: 10.1016/j.pneurobio.2012.09.002
  9. Zielinski M.C., Shin J.D., Jadhav S.P. Coherent coding of spatial position mediated by theta oscillations in the hippocampus and prefrontal cortex. J. Neurosci. 2019; 39(23): 4550–4565. doi: 10.1523/JNEUROSCI.0106-19.2019
  10. Hyafil A., Giraud A.L., Fontolan L., Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015; 38(11): 725–740. doi: 10.1016/j.tins.2015.09.001
  11. Aru J., Aru J., Priesemann V. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015; 31: 51–61. doi: 10.1016/J.CONB.2014.08.002
  12. Sotero R.C. Modeling the generation of phase-amplitude coupling in cortical circuits: from detailed networks to neural mass models. Biomed. Res. Int. 2015; 2015: 915606. doi: 10.1155/2015/915606
  13. Кичигина В.Ф. Изменения сетевых тета- и гамма-осцилляций при развитии нейродегенеративных заболеваний. Современные технологии в медицине. 2019; 11(1): 16–30. Kichigina V.F. Changes in theta and gamma network oscillations during the development of neurodegenerative disorders. Current technologies in medicine. 2019; 11(1): 16–30. (In Russ.) doi: 10.17691/stm2019.11.1.02
  14. Jensen O., Colgin L.L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 2007; 11(7): 267–269. doi: 10.1016/j.tics.2007.05.003
  15. Jirsa V., Müller V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 2013; 7: 78. doi: 10.3389/fncom.2013.00078
  16. Cohen M.X. Analyzing neural time series data: theory and practice. MIT Press; 2014. doi: 10.7551/mitpress/9609.001.0001
  17. le Van Quyen M., Foucher J., Lachaux J.P. et al. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods. 2011; 111(2): 83–98. doi: 10.1016/S0165-0270(01)00372-7
  18. Dvorak D., Fenton A.A. Toward a proper estimation of phase–amplitude coupling in neural oscillations. J. Neurosci. Methods. 2014; 225: 42–56. doi: 10.1016/J.JNEUMETH.2014.01.002
  19. Hülsemann M.J., Naumann E., Rasch B. Quantification of phase-amplitude coupling in neuronal oscillations: comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling. Front. Neurosci. 2019; 13: 573. doi: 10.3389/fnins.2019.00573
  20. Bragin A., Jandó G., Nádasdy Z. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995; 15 (1 Pt 1): 47–60. doi: 10.1523/JNEUROSCI.15-01-00047.1995
  21. Lakatos P., Shah A.S., Knuth K.H. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 2005; 94(3): 1904–1911. doi: 10.1152/jn.00263.2005
  22. Nakazono T., Takahashi S., Sakurai Y. Enhanced theta and high-gamma coupling during late stage of rule switching task in rat hippocampus. Neuroscience. 2019; 412: 216–232. doi: 10.1016/j.neuroscience.2019.05.053
  23. Scheffer-Teixeira R., Tort A.B. On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. Elife. 2016; 5: e20515. doi: 10.7554/eLife.20515
  24. Tort A.B., Komorowski R., Eichenbaum H., Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 2010; 104(2): 1195–1210. doi: 10.1152/jn.00106.2010
  25. Wulff P., Ponomarenko A.A., Bartos M. et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc. Natl. Acad. Sci. USA. 2009; 106(9): 3561–3566. doi: 10.1073/pnas.0813176106
  26. Chaieb L., Leszczynski M., Axmacher N. et al. Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cogn. Neurosci. 2015; 6(4): 149–157. doi: 10.1080/17588928.2015.1058254
  27. Vivekananda U., Bush D., Bisby J.A. et al. Theta power and theta-gamma coupling support long-term spatial memory retrieval. Hippocampus. 2021; 31(2): 213–220. doi: 10.1002/hipo.23284
  28. Friese U., Köster M., Hassler U. et al. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage. 2013; 66: 642–647. doi: 10.1016/j.neuroimage.2012.11.002
  29. Köster M., Friese U., Schöne B. et al. Theta-gamma coupling during episodic retrieval in the human EEG. Brain Res. 2014. 1577: 57–68. doi: 10.1016/j.brainres.2014.06.028
  30. Musaeus C.S., Nielsen M.S., Musaeus J.S., Høgh P. Electroencephalographic cross-frequency coupling as a sign of disease progression in patients with mild cognitive impairment: a pilot study. Front. Neurosci. 2020; 14: 790. doi: 10.3389/fnins.2020.00790
  31. Park J.Y., Jhung K., Lee J., An S.K. Theta-gamma coupling during a working memory task as compared to a simple vigilance task. Neurosci. Lett. 2013; 532: 39–43. doi: 10.1016/j.neulet.2012.10.061
  32. Griffiths B.J., Martín-Buro M.C., Staresina B.P., Hanslmayr S. Disentangling neocortical alpha/beta and hippocampal theta/gamma oscillations in human episodic memory formation. Neuroimage. 2021; 242: 118454. doi: 10.1016/j.neuroimage.2021.118454
  33. Lizarazu M., Lallier M., Molinaro N. Phase-amplitude coupling between theta and gamma oscillations adapts to speech rate. Ann. N. Y. Acad. Sci. 2019; 1453(1): 140–152. doi: 10.1111/nyas.14099
  34. Ahn J.S., Heo J., Oh J. et al. The functional interactions between cortical regions through theta-gamma coupling during resting-state and a visual working memory task. Brain Sci. 2022; 12(2): 274. doi: 10.3390/brainsci12020274
  35. Canolty R.T., Knight R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010; 14(11): 506–515. doi: 10.1016/j.tics.2010.09.001
  36. Weaver K.E., Wander J.D., Ko A.L. et al. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity. Neuroimage. 2016. 128: 238–251. doi: 10.1016/j.neuroimage.2015.12.043
  37. Bonnefond M., Kastner S., Jensen O. Communication between brain areas based on nested oscillations. eNeuro. 2017; 4(2): ENEURO.0153-16.2017. doi: 10.1523/ENEURO.0153-16.2017
  38. Heusser A.C., Poeppel D., Ezzyat Y., Davachi L. Episodic sequence memory is supported by a theta-gamma phase code. Nat. Neurosci. 2016; 19(10): 1374–1380. doi: 10.1038/nn.4374
  39. Brooks H., Goodman M.S., Bowie C.R. et al. Theta-gamma coupling and ordering information: a stable brain-behavior relationship across cognitive tasks and clinical conditions. Neuropsychopharmacology. 2020; 45(12): 2038–2047. doi: 10.1038/s41386-020-0759-z
  40. De Almeida L., Idiart M., Villavicencio A., Lisman J. Alternating predictive and short-term memory modes of entorhinal grid cells. Hippocampus. 2012; 22(8): 1647–1651. doi: 10.1002/hipo.22030
  41. Rajji T.K., Zomorrodi R., Barr M.S. et al. Ordering Information in working memory and modulation of gamma by theta oscillations in humans. Cereb. Cortex. 2017; 27(2): 1482–1490. doi: 10.1093/cercor/bhv326
  42. Shirvalkar P.R., Rapp P.R., Shapiro M.L. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc. Natl. Acad. Sci. USA. 2010; 107(15): 7054–7059. doi: 10.1073/pnas.0911184107
  43. Tort A.B., Komorowski R.W., Manns J.R. et al. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA. 2009; 106(49): 20942–20947. doi: 10.1073/pnas.0911331106
  44. Roux F., Uhlhaas P.J. Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends Cogn. Sci. 2014; 18(1): 16–25. doi: 10.1016/j.tics.2013.10.010
  45. Akkad H., Dupont-Hadwen J., Kane E. et al. Increasing human motor skill acquisition by driving theta-gamma coupling. Elife. 2021; 10: e67355. doi: 10.7554/eLife.67355
  46. Zhang L., Lee J., Rozell C., Singer A.C. Sub-second dynamics of theta-gamma coupling in hippocampal CA1. Elife. 2019; 8: e44320. doi: 10.7554/eLife.44320
  47. Riddle J., Vogelsang D.A., Hwang K. et al. Distinct oscillatory dynamics underlie different components of hierarchical cognitive control. J. Neurosci. 2020; 40(25): 4945–4953. doi: 10.1523/JNEUROSCI.0617-20.2020
  48. Voytek B., Kayser A.S., Badre D. et al. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 2015; 18(9): 1318–1324. doi: 10.1038/nn.4071
  49. Sauseng P., Peylo C., Biel A.L. et al. Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? Br. J. Psychol. 2019; 110(2): 245–255. doi: 10.1111/bjop.12340
  50. Rizzuto D.S., Madsen J.R., Bromfield E.B. et al. Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage. 2006; 31(3): 1352–358. doi: 10.1016/j.neuroimage.2006.01.009
  51. Jensen O., Lisman J.E. Novel lists of 7 ± 2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn Mem. 1996; 3: 257–263. doi: 10.1101/lm.3.2-3.257
  52. Cowan N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 2001; 24(1): 87–114. doi: 10.1017/S0140525X01003922
  53. Kamiński J., Brzezicka A., Wróbel A. Short-term memory capacity (7 ± 2) predicted by theta to gamma cycle length ratio. Neurobiol. Learn Mem. 2011; 95(1): 19–23. doi: 10.1016/j.nlm.2010.10.001
  54. Malenínská K., Rudolfová V., Šulcová K. et al. Is short-term memory capacity (7 ± 2) really predicted by theta to gamma cycle length ratio? Behav. Brain Res. 2021; 414: 113465. doi: 10.1016/j.bbr.2021.113465
  55. Leszczyński M., Fell J., Axmacher N. Rhythmic Working memory activation in the human hippocampus. Cell Rep. 2015; 13(6): 1272–1282. doi: 10.1016/j.celrep.2015.09.081
  56. Wolinski N., Cooper N.R., Sauseng P., Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018; 16(3): e2005348. doi: 10.1371/journal.pbio.2005348
  57. Herman P.A., Lundqvist M., Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013; 1536: 68–87. doi: 10.1016/j.brainres.2013.08.002
  58. Van Vugt M.K., Chakravarthi R., Lachaux J.P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front. Hum. Neurosci. 2014; 8: 696. doi: 10.3389/fnhum.2014.00696
  59. Vosskuhl J., Huster R.J., Herrmann C.S. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front. Hum. Neurosci. 2015; 9: 257. doi: 10.3389/fnhum.2015.00257
  60. Canolty R.T., Edwards E., Dalal S.S. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006; 313 (5793): 1626–1628. doi: 10.1126/science.1128115
  61. Axmacher N., Henseler M.M., Jensen O. et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. USA. 2010; 107: 3228–3233. doi: 10.1073/pnas.0911531107
  62. Holz E.M., Glennon M., Prendergast K., Sauseng P. Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage. 2010; 52(1): 326–335. doi: 10.1016/j.neuroimage.2010.04.003
  63. Lee Y.Y., Yang C.Y. Utilizing the extent of theta–gamma synchronization to estimate visuospatial memory ability. Austral. Phys. Eng. Sci. Med. 2014; 37(4): 665–672.doi: 10.1007/s13246-014-0299-0
  64. Fernández A., Pinal D., Díaz F., Zurrón M. Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiol. Learn. Mem. 2021. 183: 107476. doi: 10.1016/j.nlm.2021.107476
  65. Pahor A., Jausovec N. Theta–gamma cross-frequency coupling relates to the level of human intelligence. Intelligence. 2014; 46: 283.doi: 10.1016/j.intell.2014.06.007
  66. Siebenhühner F., Wang S.H., Arnulfo G. et al. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biol. 2020; 18(5): e3000685.doi: 10.1371/journal.pbio.3000685
  67. Zhang X., Zhong W., Brankačk J. et al. Impaired theta-gamma coupling in APP-deficient mice. Sci. Rep. 2016; 6: 21948.doi: 10.1038/srep21948
  68. Tamura M., Spellman T.J., Rosen A.M. et al. Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Nat. Commun. 2017; 8(1): 2182.doi: 10.1038/s41467-017-02108-9
  69. Goodman M.S., Kumar S., Zomorrodi R. et al. Theta-gamma coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Front. Aging Neurosci. 2018; 10: 101.doi: 10.3389/fnagi.2018.00101
  70. Brooks H., Mirjalili M., Wang W. et al. Assessing the longitudinal relationship between theta-gamma coupling and working memory performance in older adults. Cereb Cortex. 2022; 32(8): 1653–1667.doi: 10.1093/cercor/bhab295
  71. Hirano S., Nakhnikian A., Hirano Y. et al. Phase-amplitude coupling of the electroencephalogram in the auditory cortex in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2018; 3(1): 69–76. doi: 10.1016/j.bpsc.2017.09.001
  72. Popov T., Wienbruch C., Meissner S. et al. A mechanism of deficient interregional neural communication in schizophrenia. Psychophysiology. 2015; 52(5): 648–656. doi: 10.1111/psyp.12393
  73. An K.M., Ikeda T., Hasegawa C. et al. Aberrant brain oscillatory coupling from the primary motor cortex in children with autism spectrum disorders. Neuroimage Clin. 2021; 29: 102560. doi: 10.1016/j.nicl.2021.102560
  74. Mamashli F., Kozhemiako N., Khan S. et al. Children with autism spectrum disorder show altered functional connectivity and abnormal maturation trajectories in response to inverted faces. Autism Res. 2021; 14 (6): 1101–1114. doi: 10.1002/aur.2497
  75. Noda Y., Zomorrodi R., Daskalakis Z.J. et al. Enhanced theta-gamma coupling associated with hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Int. J. Psychophysiol. 2018; 133: 169–174. doi: 10.1016/j.ijpsycho.2018.07.004
  76. Sun Y., Giacobbe P., Tang C.W. et al. Deep brain stimulation modulates gamma oscillations and theta-gamma coupling in treatment resistant depression. Brain Stimul. 2015; 8(6): 1033–1042. doi: 10.1016/j.brs.2015.06.010
  77. Kim J.W., Kim B.N., Lee J. et al. Desynchronization of theta-phase gamma-amplitude coupling during a mental arithmetic task in children with attention deficit/hyperactivity disorder. PLoS One. 2016; 11(3): e0145288. doi: 10.1371/journal.pone.0145288
  78. Kim J.W., Lee J., Kim H.J. et al. Relationship between theta-phase gamma-amplitude coupling and attention-deficit/hyperactivity behavior in children. Neurosci. Lett. 2015; 590: 12–17. doi: 10.1016/j.neulet.2015.01.068
  79. Yakubov B., Das S., Zomorrodi R. et al. Cross-frequency coupling in psychiatric disorders: a systematic review. Neurosci. Biobehav. Rev. 2022; 138: 104690. doi: 10.1016/j.neubiorev.2022.104690
  80. Noda Y., Zomorrodi R., Saeki T. et al. Resting-state EEG gamma power and theta-gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clin. Neurophysiol. 2017; 128(3): 424–432. doi: 10.1016/j.clinph.2016.12.023
  81. Lopez-Pigozzi D., Laurent F., Brotons-Mas J.R. et al. Altered oscillatory dynamics of CA1 parvalbumin basket cells during theta-gamma rhythmopathies of temporal lobe epilepsy. eNeuro. 2016; 3(6): ENEURO.0284-16.2016. doi: 10.1523/ENEURO.0284-16.2016
  82. Shuman T., Amendolara B., Golshani P. Theta rhythmopathy as a cause of cognitive disability in TLE. Epilepsy Curr. 2017; 17(2): 107–111. doi: 10.5698/1535-7511.17.2.107
  83. Rossi S., Santarnecchi E., Feurra M. Noninvasive brain stimulation and brain oscillations. Handb. Clin. Neurol. 2022; 184: 239–247. doi: 10.1016/B978-0-12-819410-2.00013-8
  84. Thut G., Bergmann T.O., Fröhlich F. et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin. Neurophysiol. 2017; 128(5): 843–857. doi: 10.1016/j.clinph.2017.01.003
  85. Hanslmayr S., Axmacher N., Inman C.S. Modulating human memory via entrainment of brain oscillations. Trends Neurosci. 2019; 42(7): 485–499. doi: 10.1016/j.tins.2019.04.004
  86. Herrmann C.S., Strüber D., Helfrich R.F., Engel A.K. EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 2016; 103: 12–21. doi: 10.1016/j.ijpsycho.2015.02.003
  87. Lobo T., Brookes M.J., Bauer M. Can the causal role of brain oscillations be studied through rhythmic brain stimulation. J. Vis. 2021; 21(12): 2. doi: 10.1167/jov.21.12.2
  88. Vosskuhl J., Strüber D., Herrmann C.S. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front. Hum. Neurosci. 2018; 12: 211. doi: 10.3389/fnhum.2018.00211
  89. Riddle J., Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res. 2021; 1765: 147491. doi: 10.1016/j.brainres.2021.147491
  90. Glim S., Okazaki Y.O., Nakagawa Y. et al. Phase-amplitude coupling of neural oscillations can be effectively probed with concurrent TMS-EEG. Neural. Plast. 2019; 2019: 6263907. doi: 10.1155/2019/6263907
  91. Albouy P., Baillet S., Zatorre R.J. Driving working memory with frequency-tuned noninvasive brain stimulation. Ann. N. Y. Acad. Sci. 2018. [Epub ahead of print]. doi: 10.1111/nyas.13664
  92. Hussain S.J., Vollmer M.K., Stimely J. et al. Phase-dependent offline enhancement of human motor memory. Brain Stimul. 2021; 14(4): 873–883. doi: 10.1016/j.brs.2021.05.009
  93. Lopes-Dos-Santos V., van de Ven G.M., Morley A. et al. Parsing hippocampal theta oscillations by nested spectral components during spatial exploration and memory-guided behavior. Neuron. 2018; 100(4): 940–952.e7. doi: 10.1016/j.neuron.2018.09.031
  94. Turi Z., Mittner M., Lehr A. et al. θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro. 2020; 7(5): ENEURO.0126-20.2020. doi: 10.1523/ENEURO.0126-20.2020
  95. Lara G.A., Alekseichuk I., Turi Z. et al. Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 2018; 11(3): 509–517. doi: 10.1016/j.brs.2017.12.007
  96. Reinhart R.M.G., Nguyen J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019; 22(5): 820–827. doi: 10.1038/s41593-019-0371-x
  97. Chung S.W., Sullivan C.M., Rogasch N.C. et al. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: a TMS-EEG study. Hum. Brain Mapp. 2019; 40(2): 608–627. doi: 10.1002/hbm.24398

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Poydasheva A.G., Bakulin I.S., Sinitsyn D.O., Zabirova A.H., Lagoda D.Y., Suponeva N.A., Piradov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies