NMDA receptor antagonists as potential therapy in cerebellar degenerative disorders

Cover Page

Cite item

Full Text

Abstract

Cerebellar degeneration remains a poorly studied topic. Excitotoxicity, i.e. neuronal damage and death due to excess activation of postsynaptic N-methyl-D-aspartate receptors (NMDAR) by glutamate, is considered to be a universal mechanism of most neurodegenerative conditions. The use of antagonists that predominantly block NMDAR in cases of excitotoxicity is a very promising treatment strategy for neurodegenerative disorders.

This review presents the known structure and function of NMDAR. Information on studies investigating the use of NMDAR antagonists in the treatment of neurodegenerative diseases is provided. Creation of new therapies to correct excitotoxicity in various neurodegenerative disorders, for example, spinocerebellar ataxias, requires further study of the subunit composition and the role of NMDAR in the cerebellum. Treatment methods that combine the use of extrasynaptic NMDAR antagonists or synaptic NMDAR agonists with drugs that affect the total amount of glutamate in the synaptic cleft are promising.

About the authors

Olga S. Belozor

Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Author for correspondence.
Email: olsbelor@gmail.com
ORCID iD: 0000-0001-8384-5962

assistant, Department of biological chemistry with courses in medical, pharmaceutical and toxicological chemistry

Russian Federation, 660022, Krasnoyarsk, Partizan Zheleznyak str., 1

Andrey N. Shuvaev

Siberian Federal University

Email: olsbelor@gmail.com
ORCID iD: 0000-0002-3887-1413

Associate Professor, Department of biomedical systems and complexes, Institute of Fundamental Biology and Biotechnology

Russian Federation, Krasnoyarsk

Yana V. Fritsler

Siberian Federal University

Email: olsbelor@gmail.com
ORCID iD: 0000-0003-3299-1200

postgraduate student, Department of biophysics, Institute of Fundamental Biology and Biotechnology

Russian Federation, Krasnoyarsk

Anton N. Shuvaev

Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky

Email: olsbelor@gmail.com
ORCID iD: 0000-0003-0078-4733

Head, Research Institute of Molecular Medicine and Pathobiochemistry

Russian Federation, 660022, Krasnoyarsk, Partizan Zheleznyak str., 1

References

  1. Przedborski S., Vila M., Jackson-Lewis V. Neurodegeneration: What is it and where are we? J. Clin. Invest. 2003. 111(1): 3–10. doi: 10.1172/JCI17522
  2. Пономарёв В.В. Нейродегенеративные заболевания: настоящее и будущее. Медицинские новости. 2007; (5): 23–28. Ponomarev V.V. Neurodegenerative diseases: present and future. Meditsinskiye novosti. 2007; (5): 23–28. (In Russ.)
  3. Сычёва М.А., Сергеева И.Г., Тулупов А.А. Органические поражения головного мозга. Новосибирск; 2015. 32 с. Sycheva M.A., Sergeeva I.G., Tulupov A.A. Organic lesions of the brain. Novosibirsk; 2015. 32 p. (In Russ.)
  4. Пономарев В.В. Нейродегенеративные заболевания. Руководство для врачей. СПб.; 2013. 200 с. Ponomarev V.V. Neurodegenerative diseases. Guide for doctors. St. Petersburg; 2013. 200 p. (In Russ.)
  5. Liang K.J., Carlson E.S. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol. Learn. Mem. 2020: 106981. doi: 10.1172/JCI17522
  6. Beal M.F. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 1992; 6(15): 3338–3344.
  7. Иллариошкин С.Н., Клюшников С.А., Брылев П.В. и др. Превентивная нейропротекция при нейродегенеративных заболеваниях: использование антагонистов глутаматных рецепторов (обзор литературы и собственный опыт). Неврологический журнал. 2006; (11): 47–54. Illarioshkin S.N., Klushnikov S.A., Brylyev L.V. et al. Preventive neuroprotection in neurodegenerative diseases: glutamate receptor antagonists administration (review of literature and own experience). Nevrologicheskiy zhurnal. 2006; (11): 47–54. (In Russ.)
  8. Lewerenz J., Maher P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front. Neurosci. 2015; 9: 469. doi: 10.3389/fnins.2015.00469
  9. Arundine M., Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003; 4(4–5): 325–337. doi: 10.1016/s0143-4160(03)00141-6
  10. Chitnis T., Weiner H.L. CNS inflammation and neurodegeneration. J. Clin. Invest. 2017; 127(10): 3577–3587. doi: 10.1172/JCI90609
  11. Kawato M., Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol. Cybern. 1992; 68(2): 95–103. doi: 10.1007/BF00201431
  12. Khilkevich A., Canton-Josh J., DeLord E., Mauk M.D. A cerebellar adaptation to uncertain inputs. Sci. Adv. 2018; 4(5): eaap9660. doi: 10.1126/sciadv.aap9660
  13. Калиниченко С.Г., Мотавкин П.А. Кора мозжечка. М.; 2005. 319 с. Kalinichenko S.G., Motavkin P.A. Cerebellar cortex. Moscow; 2005. 319 p.
  14. Shepherd G.M. The Synaptic Organization of the Brain. Oxford; 2004. 736 c.
  15. Huang C.M., Wang L., Huang R.H. Cerebellar granule cell: ascending axon and parallel fiber. Eur. J. Neurosci. 2006; 23(7): 1731–1737. doi: 10.1111/j.1460-9568.2006.04690.x
  16. Manto M., De Zeeuw C. Diversity and complexity of roles of granule cells in the cerebellar cortex. Cerebellum. 2012; 11(1): 1–4. doi: 10.1007/s12311-012-0365-7
  17. Tyrrell T., Willshaw D. Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philos.Trans. R. Soc. Lond. B. Biol. Sci. 1992; 336(1277): 239–257. doi: 10.1098/rstb.1992.0059
  18. Wadiche J.I., Jahr C.E . Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001; 32(2): 301–313. doi: 10.1016/s0896-6273(01)00488-3
  19. Llano I., Marty A., Armstrong C.M., Konnerth A. Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J. Physiol. 1991; 434: 183–213. doi: 10.1113/jphysiol.1991.sp018465
  20. Thompson C.L., Drewery D.L., Atkins H.D. et al. Immunohistochemical localization of N-methyl-D-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum. Neurosci. Lett. 2000; 283(2): 85–88. doi: 10.1016/s0304-3940(00)00930-7
  21. Piochon C., Levenes C., Ohtsuki G., Hansel C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J. Neurosci. 2010; 30(45): 15330–15335. doi: 10.1523/JNEUROSCI.4344-10.2010
  22. Bading H. Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J. Exp. Med. 2017; 214(3): 569–578. doi: 10.1084/jem.20161673
  23. Lalo U., Pankratov Y., Kirchhoff F. et al. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 2006; 26(10): 2673–2683. doi: 10.1523/JNEUROSCI.4689-05.2006
  24. López T., López-Colomé A.M., Ortega A. NMDA receptors in cultured radial glia. FEBS Lett. 1997; 405(2): 245–248. doi: 10.1016/s0014-5793(97)00195-6
  25. Stroebel D., Casado M., Paoletti P. Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr. Opin. Physiol. 2018; 2: 1–12. doi: 10.1016/j.cophys.2017.12.004
  26. Frank R.A., Grant S.G. Supramolecular organization of NMDA receptors and the postsynaptic density. Curr. Opin. Neurobiol. 2017; 45: 139–147. doi: 10.1016/j.conb.2017.05.019
  27. Stroebel D., Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J. Physiol. 2020; 599(10): 2615–2638. doi: 10.1113/JP279028
  28. Sibarov D.A., Stepanenko Y.D., Silantiev I.V. et al. Developmental changes of synaptic and extrasynaptic NMDA receptor expression in rat cerebellar neurons in vitro. J. Mol. Neurosci. 2018; 64(2): 300–311. doi: 10.1007/s12031-017-1021-y
  29. Garyfallou V.T., Kohama S.G., Urbanski H.F. Distribution of NMDA and AMPA receptors in the cerebellar cortex of rhesus macaques. Brain Res. 1996; 716(1–2): 22–28. doi: 10.1016/0006-8993(95)01545-0
  30. Hafidi A., Hillman D.E. Distribution of glutamate receptors GluR 2/3 and NR1 in the developing rat cerebellum. Neuroscience. 1997; 81(2): 427–436. doi: 10.1016/s0306-4522(97)00140-1
  31. Meguro H., Mori H., Araki K. et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992; 357(6373): 70–74. doi: 10.1038/357070a0
  32. Llansola M., Sanchez-Perez A., Cauli O., Felipo V. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum. 2005; 4(3): 154–161. doi: 10.1080/14734220510007996
  33. Zhu S., Stein R.A., Yoshioka C. et al. Mechanism of NMDA receptor inhibition and activation. Cell. 2016; 165(3): 704–714. doi: 10.1016/j.cell.2016.03.028
  34. Vieira M., Yong X.L.H., Roche K.W., Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem. 2020; 154(2): 121–143. doi: 10.1111/jnc.14970
  35. Monyer H., Burnashev N., Laurie D.J. et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994; 12(3): 529–540. doi: 10.1016/0896-6273(94)90210-0
  36. Hansen K.B., Yi F., Perszyk R.E. et aql. NMDA receptors in the central nervous system. Methods Mol. Biol. 2017; 1677: 1–80. doi: 10.1007/978-1-4939-7321-7_1
  37. Krupa M., Crepel F. Transient sensitivity of rat cerebellar Purkinje cells to N-methyl-D-aspartate during development. A voltage clamp study in in vitro slices. Eur. J. Neurosci. 1990; 2(4): 312–316. doi: 10.1111/j.1460-9568.1990.tb00423.x
  38. Farrant M., Cull-Candy S.G. Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices. Proc. Biol. Sci. 1991; 244(1311): 179–184. doi: 10.1098/rspb.1991.0067
  39. Akazawa C., Shigemoto R., Bessho Y. et al. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 1994; 347(1): 150–160. doi: 10.1002/cne.903470112
  40. Rigby M., Le Bourdellès B., Heavens R.P. et al. The messenger RNAs for the N-methyl-D-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain. Neuroscience. 1996; 73(2): 429–447. doi: 10.1016/0306-4522(96)00089-9
  41. Watanabe M., Mishina M., Inoue Y. Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum. J. Comp. Neurol. 1994; 343(4): 513–519. doi: 10.1002/cne.903430402
  42. Wong H.K., Liu X.B., Matos M.F. et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J. Comp. Neurol. 2002; 450(4): 303–317. doi: 10.1002/cne.10314
  43. Matsuda K., Fletcher M., Kamiya Y., Yuzaki M. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J. Neurosci. 2003; 23: 10064–10073. doi: 10.1523/JNEUROSCI.23-31-10064.2003
  44. Pérez-Otaño I., Larsen R.S., Wesseling J.F. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 2016; 17(10): 623–635. doi: 10.1038/nrn.2016.92
  45. Bouvier G., Bidoret C., Casado M., Paoletti P. Presynaptic NMDA receptors: roles and rules. Neuroscience. 2015; 311: 322–340. doi: 10.1016/j.neuroscience.2015.10.033
  46. Tzingounis A.V., Nicoll R.A. Presynaptic NMDA receptors get into the act. Nat. Neurosci. 2004; 7(5): 419–420. doi: 10.1038/nn0504-419
  47. Yamada K., Fukaya M., Shimizu H. et al. NMDA receptor subunits GluRepsilon1, GluRepsilon3 and GluRzeta1 are enriched at the mossy fibre-granule cell synapse in the adult mouse cerebellum. Eur. J. Neurosci. 2001; 13(11): 2025–2036. doi: 10.1046/j.0953-816x.2001.01580.x
  48. Renzi M., Farrant M., Cull-Candy S.G. Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J. Physiol. 2007; 585(Pt 1): 91–101. doi: 10.1113/jphysiol.2007.141531
  49. Lipton S.A. NMDA receptors, glial cells, and clinical medicine. Neuron. 2006; 50(1): 9–11. doi: 10.1016/j.neuron.2006.03.026
  50. Verkhratsky A., Kirchhoff F. NMDA receptors in glia. Neuroscientist. 2007; 13(1): 28–37. doi: 10.1177/1073858406294270
  51. Yao Y., Mayer M.L. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 2006; 26(17): 4559–4566. doi: 10.1523/JNEUROSCI.0560-06.2006
  52. Chatterton J.E., Awobuluyi M., Premkumar L.S. et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002; 415(6873): 793–798. doi: 10.1038/nature715
  53. Smothers C.T., Woodward J.J. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J. Pharmacol. Exp. Ther. 2007; 322(2): 739–748. doi: 10.1124/jpet.107.123836
  54. Nishi M., Hinds H., Lu H.P. et al. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J. Neurosci. 2001; 21(23): RC185. doi: 10.1523/JNEUROSCI.21-23-j0003.2001
  55. Skrenkova K., Hemelikova K., Kolcheva M. et al. Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Sci. Rep. 2019; 9(1): 12303. doi: 10.1038/s41598-019-48845-3
  56. Carter A.G., Regehr W.G. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J. Neurosci. 2000; 20: 4423–4434. doi: 10.1523/JNEUROSCI.20-12-04423.2000
  57. Chen S., Diamond J.S. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J. Neurosci. 2002; 22: 2165–2173. doi: 10.1523/JNEUROSCI.22-06-02165.2002
  58. Clark B.A., Cull-Candy S.G. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptoronly synapse. J. Neurosci. 2002; 22(11): 4428–4436. doi: 10.1523/JNEUROSCI.22-11-04428.2002
  59. Franchini L., Carrano N., Di Luca M., Gardoni F. Synaptic GluN2A-containing NMDA receptors: from physiology to pathological synaptic plasticity. Int. J. Mol. Sci. 2020; 21(4): 1538. doi: 10.3390/ijms21041538
  60. Steigerwald F., Schulz T.W., Schenker L.T. et al. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J. Neurosci. 2000; 20(12): 4573–4581. doi: 10.1523/JNEUROSCI.20-12-04573.2000
  61. Hayashi Y., Majewska A.K. Dendritic spine geometry: functional implication and regulation. Neuron. 2005; 46(4): 529–532. doi: 10.1016/j.neuron.2005.05.006
  62. Nowak L., Bregestovski P., Ascher P. et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984; 307(5950): 462–465. doi: 10.1038/307462a0
  63. Gibb A.J., Ogden K.K., McDaniel M.J. et al. A structurally derived model of subunit-dependent NMDA receptor function. J. Physiol. 2018; 596(17): 4057–4089. doi: 10.1113/JP276093
  64. Hardingham G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 2009; 37(Pt 6): 1147–1160. doi: 10.1042/BST0371147
  65. Papouin T., Ladépêche L., Ruel J. et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012; 150(3): 633–646. doi: 10.1016/j.cell.2012.06.029
  66. Schmitz D., Mellor J., Frerking M., Nicoll R.A. Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA. 2001; 98(20): 11003–11008. doi: 10.1073/pnas.191351498
  67. Izumi Y., Tokuda K., Zorumski C.F. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus. 2008; 18(3): 258–265. doi: 10.1002/hipo.20383
  68. Katagiri H., Tanaka K., Manabe T. Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur. J. Neurosci. 2001; 14(3): 547–553. doi: 10.1046/j.0953-816x.2001.01664.x
  69. Lüscher C., Malenka R.C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold. Spring. Harb. Perspect. Biol. 2012; 4(6): a005710. doi: 10.1101/cshperspect.a005710
  70. Franchini L., Stanic J., Ponzoni L. et al. Linking NMDA receptor synaptic retention to synaptic plasticity and cognition. iScience. 2019; 19: 927–939. doi: 10.1016/j.isci.2019.08.036
  71. Parsons M.P., Raymond L.A. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron. 2014; 82(2): 279–293. doi: 10.1016/j.neuron.2014.03.030
  72. Liu D.D., Yang Q., Li S.T. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res. Bull. 2013; 93: 10–16. doi: 10.1016/j.brainresbull.2012.12.003
  73. Auberson Y.P., Wang Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004; 304(5673): 1021–1024. doi: 10.1126/science.1096615
  74. Massey P.V., Johnson B.E., Moult P.R. et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical longterm potentiation and long-term depression. J. Neurosci. 2004; 24(36): 7821–7828. doi: 10.1523/JNEUROSCI.1697-04.2004
  75. Lynch M.A. Long-term potentiation and memory. Physiol. Rev. 2004; 84(1): 87–136. doi: 10.1152/physrev.00014.2003
  76. Ramirez A., Arbuckle M.R. The N-Methyl-D-aspartate receptor: memory, madness, and more. Biol. Psychiatry. 2017; 82(1): e1–e3. doi: 10.1016/j.biopsych.2017.05.007
  77. Volianskis A., France G., Jensen M.S. et al. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res. 2015; 1621: 5–16. doi: 10.1016/j.brainres.2015.01.016
  78. Aamodt S.M., Constantine-Paton M. The role of neural activity in synaptic development and its implications for adult brain function. Adv. Neurol. 1999; 79: 133–144.
  79. Bliss T.V., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993; 361(6407): 31–39. doi: 10.1038/361031a0
  80. Arundine M., Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol. Life. Sci. 2004; 61(6): 657–668. doi: 10.1007/s00018-003-3319-x
  81. Lipton S.A., Rosenberg P.A. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 1994; 330(9): 613–622. doi: 10.1056/NEJM199403033300907
  82. Ikonomidou C., Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002; 1(6): 383–386. doi: 10.1016/s1474-4422(02)00164-3
  83. Hetman M., Kharebava G. Survival signaling pathways activated by NMDA receptors. Curr. Top. Med. Chem. 2006; 6(8): 787–799. doi: 10.2174/156802606777057553
  84. Hardingham G.E. Pro-survival signalling from the NMDA receptor. Biochem. Soc. Trans. 2006; 34(Pt 5): 936–938. doi: 10.1042/BST0340936
  85. Petralia R.S., Wang Y.X., Hua F. et al. Organization of NMDA receptors at extrasynaptic locations. Neuroscience. 2010; 167(1): 68–87. doi: 10.1016/j.neuroscience.2010.01.022
  86. Higley M.J., Sabatini B.L. Calcium signaling in dendritic spines. Cold Spring Harb. Perspect. Biol. 2012; 4(4): a005686. doi: 10.1101/cshperspect.a005686
  87. Collins M.O., Grant S.G. Supramolecular signalling complexes in the nervous system. Subcell. Biochem. 2007; 43: 185–207. doi: 10.1007/978-1-4020-5943-8_9
  88. Hardingham G.E., Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010; 11(10): 682–696. doi: 10.1038/nrn2911
  89. Zhang S.J., Steijaert M.N., Lau D. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron. 2007; 53(4): 549–562. doi: 10.1016/j.neuron.2007.01.025
  90. Köles L., Kató E., Hanuska A. et al. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal. 2016; 12(1): 1–24. doi: 10.1007/s11302-015-9480-5
  91. Wang R., Reddy P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis. 2017; 57(4): 1041–1048. doi: 10.3233/JAD-160763
  92. Camacho A., Massieu L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch. Med. Res. 2006; 37(1): 11–8. doi: 10.1016/j.arcmed.2005.05.014
  93. Gimenez C., Zafra F., Aragon C. Fisiopatologia de los transportadores de glutamato y de glicina: nuevas dianas terapeuticas [Pathophysiology of the glutamate and the glycine transporters: new therapeutic targets]. Rev. Neurol. 2018; 67(12): 491–504. (In Spanish).
  94. Rossi D.J., Oshima T., Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000; 403(6767): 316–321. doi: 10.1038/35002090
  95. Lacor P.N., Buniel M.C., Furlow P.W. et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 2007; 27(4): 796–807. doi: 10.1523/JNEUROSCI.3501-06.2007
  96. Venkitaramani D.V., Chin J., Netzer W.J. et al. Beta-amyloid modulation of synaptic transmission and plasticity. J. Neurosci. 2007; 27(44): 11832–11837. doi: 10.1523/JNEUROSCI.3478-07.2007
  97. Wang C.X., Shuaib A. NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr. Drug Targets CNS Neurol. Disord. 2005; 4(2): 143–51. doi: 10.2174/1568007053544183
  98. Zuccato C., Valenza M., Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev. 2010; 90(3): 905–981. doi: 10.1152/physrev.00041.2009
  99. Milnerwood A.J., Gladding C.M., Pouladi M.A. et al. Early increase in extrasynaptic NMDA receptor signalling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron. 2010; 65(2): 178–190. doi: 10.1016/j.neuron.2010.01.008
  100. Okamoto S., Pouladi M.A., Talantova M. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 2009; 15(12): 1407–1413. doi: 10.1038/nm.2056
  101. Cabal-Herrera A.M., Tassanakijpanich N., Salcedo-Arellano M.J., Hagerman R.J. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): pathophysiology and clinical implications. Int. J. Mol. Sci. 2020; 21(12): 4391. doi: 10.3390/ijms21124391
  102. Vandame D., Ulmann L., Teigell M. et al. Development of NMDAR anta- gonists with reduced neurotoxic side effects: a study on GK11. PLoS One. 2013; 8(11): e81004. doi: 10.1371/journal.pone.0081004
  103. Lipton S.A. Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci. 2007; 8(10): 803–808. doi: 10.1038/nrn2229
  104. Palygin O., Lalo U., Pankratov Y. Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 2011; 163(8): 1755–1766. doi: 10.1111/j.1476-5381.2011.01374.x
  105. Chen H.S., Lipton S.A. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 2006; 97(6): 1611–1626. doi: 10.1111/j.1471-4159.2006.03991.x
  106. Léveillé F., Gaamouch F., Gouix E. et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 2008; 22(12): 4258–4271. doi: 10.1096/fj.08-107268
  107. Papadia S., Soriano F.X., Léveillé F. et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 2008; 11(4): 476–487. doi: 10.1038/nn2071
  108. Kotermanski S.E., Johnson J.W. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J. Neurosci. 2009; 29(9): 2774–2779. doi: 10.1523/JNEUROSCI.3703-08.2009
  109. Costa V.V., Del Sarto J.L., Rocha R.F. et al. N-Methyl-d-Aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. mBio. 2017; 8(2): e00350–e003517. doi: 10.1128/mBio.00350-17
  110. Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996; 47(6 Suppl 4): S233–S241. doi: 10.1212/wnl.47.6_suppl_4.233s
  111. Han G.Y., Li C.Y., Shi H.B. et al. Riluzole is a promising pharmacological inhibitor of bilirubin-induced excitotoxicity in the ventral cochlear nucleus. CNS Neurosci. Ther. 2015; 21(3): 262–270. doi: 10.1111/cns.12355
  112. Debono M.W., Le Guern J., Canton T. et al. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 1993; 235(2–3): 283–289. doi: 10.1016/0014-2999(93)90147-a
  113. Lamanauskas N., Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur. J. Neurosci. 2008; 27(10): 2501–2514. doi: 10.1111/j.1460-9568.2008.06211.x
  114. Okamoto M., Gray J.D., Larson C.S. et al. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer’s disease. Transl. Psychiatry. 2018; 8(1): 153. doi: 10.1038/s41398-018-0201-z
  115. Landwehrmeyer G.B., Dubois B., de Yébenes J.G. et al. European Huntington’s Disease Initiative Study Group. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann. Neurol. 2007; 62(3): 262–272. doi: 10.1002/ana.21181
  116. Sugiyama A., Saitoh A., Yamada M. et al. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat. Behav. Brain Res. 2017; 327: 98–102. doi: 10.1016/j.bbr.2017.03.035
  117. Blanpied T.A., Clarke R.J., Johnson J.W. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. 2005; 25(13): 3312–3322. doi: 10.1523/JNEUROSCI.4262-04.2005
  118. Perez-Lloret S., Rascol O. Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J. Neural. Transm. (Vienna). 2018; 125(8): 1237–1250. doi: 10.1007/s00702-018-1869-1
  119. Uitti R.J., Rajput A.H., Ahlskog J.E. et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology. 1996; 46(6): 1551–1556. doi: 10.1212/wnl.46.6.1551
  120. Gao C., Liu J., Tan Y., Chen S. Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl. Neurodegener. 2020; 9: 12. doi: 10.1186/s40035-020-00191-5
  121. Paquette M.A., Martinez A.A., Macheda T. et al. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson’s disease: role of NMDA vs. 5-HT1A receptors. Eur. J. Neurosci. 2012; 36(9): 3224–3234. doi: 10.1111/j.1460-9568.2012.08243.x
  122. Verhagen Metman L., Morris M.J., Farmer C. et al. Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology. 2002; 59(5): 694–699. doi: 10.1212/wnl.59.5.694
  123. Lucetti C., Del Dotto P., Gambaccini G. et al. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2003; 60(12): 1995–1997. doi: 10.1212/01.wnl.0000068165.07883.64
  124. Park J.H., Kim Y.H., Ahn J.H. et al. Atomoxetine protects against NMDA receptor-mediated hippocampal neuronal death following transient global cerebral ischemia. Curr. Neurovasc. Res. 2017; 14(2): 158–168. doi: 10.2174/1567202614666170328094042
  125. Ikonomidou C., Bittigau P., Koch C. et al. Neurotransmitters and apoptosis in the developing brain. Biochem. Pharmacol. 2001; 62(4): 401–405. doi: 10.1016/s0006-2952(01)00696-7
  126. Shen G., Han F., Shi W.X. Effects of low doses of ketamine on pyramidal neurons in rat prefrontal cortex. Neuroscience. 2018; 384: 178–187. doi: 10.1016/j.neuroscience.2018.05.037
  127. Amat-Foraster M., Jensen A.A., Plath N. et al. Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Neuropharmacology. 2018; 137: 13–23. doi: 10.1016/j.neuropharm.2018.04.022
  128. Bell R.F., Dahl J.B., Moore R.A., Kalso E. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst. Rev. 2006; 25(1): CD004603. doi: 10.1002/14651858.CD004603.pub2
  129. Kadriu B., Musazzi L., Henter I.D. et al. Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int. J. Neuropsychopharmacol. 2019; 22(2): 119–135. doi: 10.1093/ijnp/pyy094
  130. Kishimoto T., Chawla J.M., Hagi K. et al. Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol. Med. 2016; 46(7): 1459–1472. doi: 10.1017/S0033291716000064
  131. Chenard B.L., Bordner J., Butler T.W. et al. (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J. Med. Chem. 1995; 38(16): 3138–3145. doi: 10.1021/jm00016a017
  132. Merchant R.E., Bullock M.R., Carmack C.A. et al. A double-blind, placebo-controlled study of the safety, tolerability and pharmacokinetics of CP-101,606 in patients with a mild or moderate traumatic brain injury. Ann. N.Y. Acad. Sci. 1999; 890: 42–50. doi: 10.1111/j.1749-6632.1999.tb07979.x
  133. Preskorn S.H., Baker B., Kolluri S. et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol. 2008; 28(6): 631–637. doi: 10.1097/JCP.0b013e31818a6cea
  134. Machado-Vieira R., Henter I.D., Zarate C.A. New targets for rapid antidepressant action. Prog. Neurobiol. 2017; 152: 21–37. doi: 10.1016/j.pneurobio.2015.12.001
  135. LePage K.T., Ishmael J.E., Low C.M. et al. Differential binding properties of [3H]dextrorphanand [3H]MK-801 in heterologously expressed NMDA receptors. Neuropharmacology. 2005; 49(1): 1–16. doi: 10.1016/j.neuropharm.2005.01.029
  136. Askmark H., Aquilonius S.M., Gillberg P.G. et al. A pilot trial of dextromethorphan in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry. 1993; 56(2): 197–200. doi: 10.1136/jnnp.56.2.197
  137. Kalia L.V., Kalia S.K., Salter M.W. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008; 7(8): 742–755. doi: 10.1016/S1474-4422(08)70165-0
  138. Vijayanathan V., Gulinello M., Ali N., Cole P.D. Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behav. Brain. Res. 2011; 225(2): 491–497. doi: 10.1016/j.bbr.2011.08.006
  139. Rammes G. Neramexane: a moderate-affinity NMDA receptor channel blocker: new prospects and indications. Expert. Rev. Clin. Pharmacol. 2009; 2(3): 231–238. doi: 10.1586/ecp.09.7
  140. Banks P., Franks N.P., Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010; 112(3): 614–622. doi: 10.1097/ALN.0b013e3181cea398
  141. Lavaur J., Lemaire M., Pype J. et al. Neuroprotective and neurorestorative potential of xenon. Cell Death Dis. 2016; 7(4): e2182. doi: 10.1038/cddis.2016.86
  142. Lekieffre D., Benavides J., Scatton B., Nowicki J.P. Neuroprotection afforded by a combination of eliprodil and a thrombolytic agent, rt-PA, in a rat thromboembolic stroke model. Brain Res. 1997; 776(1–2): 88–95. doi: 10.1016/s0006-8993(97)00992-x
  143. Fisher M. Cerestat (CNS 1102), a non-competitive NMDA antagonist, in ischemic stroke patients: dose-escalating safety study. Cerebrovasc. Dis. 1994; 4: 245.
  144. Kapin M.A., Doshi R., Scatton B. et al. Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia. Invest. Ophthalmol. Vis. Sci. 1999; 40(6): 1177–1182.
  145. Henter I.D., de Sousa R.T., Zarate C.A. Glutamatergic modulators in depression. Harv. Rev. Psychiatry. 2018; 26(6): 307–319. doi: 10.1097/HRP.0000000000000183
  146. Fasipe O.J. The emergence of new antidepressants for clinical use: аgomelatine paradox versus other novel agents. IBRO Rep. 2019; 6: 95–110. doi: 10.1016/j.ibror.2019.01.001
  147. Kim Y.S., Chang H.K., Lee J.W. et al. Protective effect of gabapentin on N-methyl-D-aspartate-induced excitotoxicity in rat hippocampal CA1 neurons. J. Pharmacol. Sci. 2009; 109(1): 144–147. doi: 10.1254/jphs.08067sc
  148. Chen J., Li L., Chen S.R. et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018; 22(9): 2307–2321. doi: 10.1016/j.celrep.2018.02.021
  149. Hashimoto K., Malchow B., Falkai P., Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur. Arch. Psychiatry. Clin. Neurosci. 2013; 263(5): 367–377. doi: 10.1007/s00406-013-0399-y
  150. Moskal J.R., Burgdorf J.S., Stanton P.K. et al. The development of Rapasti- nel (formerly GLYX-13); a rapid acting and long lasting antidepressant. Curr. Neuropharmacol. 2016; 15(1): 47–56. doi: 10.2174/1570159x14666160321122703
  151. Preskorn S., Macaluso M., Mehra D.O. et al. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J. Psychiatr. Pract. 2015; 21(2): 140–149. doi: 10.1097/01.pra.0000462606.17725.93
  152. Tóth Z., Mihály A., Mátyás A., Krisztin-Péva B. Non-competitive antago- nists of NMDA and AMPA receptors decrease seizure-induced c-fos protein expression in the cerebellum and protect against seizure symptoms in adult rats. Acta. Histochem. 2018; 120(3): 236–241. doi: 10.1016/j.acthis.2018.02.004
  153. Muir K.W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 2006; 6(1): 53–60. doi: 10.1016/j.coph.2005.12.002
  154. Wu Q.J., Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol. Brain. 2018; 11(1): 15. doi: 10.1186/s13041-018-0357-8
  155. Sanchez-Perez A., Llansola M., Cauli O., Felipo V. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum. 2005; 4(3): 162–170. doi: 10.1080/14734220510008003
  156. Кудряшова И.В. Пресинаптическая LTP в условиях блокады NMDA2B-рецепторов. Журнал высшей нервной деятельности им. И.П. Павлова. 2020; 70(1): 115–124. Kudryashova I.V. Presynaptic LTP after inhibition of NMDA2B receptors. Journal of Higher Nervous Activity named after I.P. Pavlov. 2020; 70(1): 115–124. (In Russ.) doi: 10.31857/S0044467720010074
  157. Зайченко М.И., Закиров Ф.Х., Маркевич В.А., Григорьян Г.А. МК-801 нарушает реконсолидацию “новой” памяти и влияет на “старую” память при инструментальном пищевом поведении в 8-рукавном радиальном лабиринте у крыс. Журнал высшей нервной деятельности им. И.П. Павлова. 2020; 70(6): 770–782. Zaichenko M.I., Zakirov Ph.Kh., Markevich V.A., Grigoryan G.A. MK-801 disrupts reconsolidation of new memory and impairs old memory at instrumental alimentary behaviorin 8-arm radial maze in rats. Journal of Higher Nervous Acti- vity named after I.P. Pavlov. 2020; 70(6): 770–782. (In Russ.) doi: 10.31857/S004446772006012X
  158. Муровец В.О., Александров А.А. Особенности влияния мемантина на обучение крыс в водном тесте Морриса. Журнал высшей нервной деятельности им. И.П. Павлова. 2020; 70(1): 50–61. Murovets V.O., Aleksandrov A.A. Characteristics of memantine influences on learning in the Morris water maze. Journal of Higher Nervous Activity named after I.P. Pavlov. 2020; 70(1): 50–61. (In Russ.) doi: 10.31857/S0044467720010104
  159. Monti B., Contestabile A. Blockade of the NMDA receptor increases deve- lopmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur. J. Neurosci. 2000; 12(9): 3117–3123. doi: 10.1046/j.1460-9568.2000.00189.x
  160. Adams S.M., de Rivero Vaccari J.C., Corriveau R.A. Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus J. Neurosci. 2004; 24(42): 9441–9450. doi: 10.1523/JNEUROSCI.3290-04.2004
  161. Ikonomidou C., Stefovska V., Turski L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc. Natl. Acad. Sci. USA. 2000; 97(23): 12885–12890. doi: 10.1073/pnas.220412197
  162. Iizuka A., Nakamura K., Hirai H. Long-term oral administration of the NMDA receptor antagonist memantine extends life span in spinocerebellar ataxia type 1 knock-in mice. Neurosci. Lett. 2015; 592: 37–41. doi: 10.1016/j.neulet.2015.02.055
  163. Seritan A.L., Nguyen D.V., Mu Y. et al. Memantine for fragile x-associated tremor/ataxia syndrome: a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry. 2014; 75(3): 264–271. doi: 10.4088/JCP.13m08546
  164. Yang J.C., Niu Y.Q., Simon C. et al. Memantine effects on verbal memory in fragile X-associated tremor/ataxia syndrome (FXTAS): a double-blind brain potential study. Neuropsychopharmacology. 2014; 39(12): 2760–2768. doi: 10.1038/npp.2014.122
  165. Yang J.C., Rodriguez A., Royston A. et al. Memantine improves attentional processes in fragile X-associated tremor/ataxia syndrome: electrophysiological evidence from a randomized controlled trial. Sci. Rep. 2016; 6: 21719. doi: 10.1038/srep21719
  166. Ortigas M.C., Bourgeois J.A., Schneider A. et al. Improving fragile X-associated tremor/ataxia syndrome symptoms with memantine and venlafaxine. J. Clin. Psychopharmacol. 2010; 30(5): 642–644. doi: 10.1097/JCP.0b013e3181f1d10a
  167. Rosini F., Federighi P., Serra A. et al. Memantine improves fixation stability in recessive cerebellar ataxia with saccadic intrusions (P02.262). Neurology. 2012; 78(Suppl 1): P02.262.
  168. Rosini F., Federighi P., Pretegiani E. et al. Ocular-motor profile and effects of memantine in a familial form of adult cerebellar ataxia with slow saccades and square wave saccadic intrusions. PloS One. 2013; 8(7): e69522. doi: 10.1371/journal.pone.0069522
  169. Serra A., Liao K., Martinez-Conde S. et al. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology. 2008; 70(10): 810–812. doi: 10.1212/01.wnl.0000286952.01476.eb
  170. Nag N., Tarlac V., Storey E. Assessing the efficacy of specific cerebellomodulatory drugs for use as therapy for spinocerebellar ataxia type 1. Cerebellum. 2013; 12: 74–82. doi: 10.1007/s12311-012-0399-x
  171. Schmidt J., Schmidt T., Golla M. et al. In vivo assessment of riluzole as a potential therapeutic drug for spinocerebellar ataxia type 3. J. Neurochem. 2016; 138: 150–162. doi: 10.1111/jnc.13606
  172. Robinson K. J., Watchon M., Laird A. S. Aberrant cerebellar circuitry in the spinocerebellar ataxias. Front. Neurosci. 2020; 14: 707. doi: 10.3389/fnins.2020.00707
  173. Romano S., Coarelli G., Marcotulli C. et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015; 14: 985–991. doi: 10.1016/S1474-4422(15)00201-X
  174. Zesiewicz T.A., Wilmot G., Kuo S.H. et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018; 90(10): 464–471. doi: 10.1212/WNL.0000000000005055
  175. de Mendonça A., Ribeiro J.A. Adenosine inhibits the NMDA receptor-mediated excitatory postsynaptic potential in the hippocampus. Brain Res. 1993; 606(2): 351–356. doi: 10.1016/0006-8993(93)91007-f
  176. Takayasu Y., Iino M., Kakegawa W. et al. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J. Neurosci. 2005; 25(38): 8788–8793. doi: 10.1523/JNEUROSCI.1020-05.2005
  177. Bezprozvanny I., Klockgether T. Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs Future. 2009; 34(12): 1443434. doi: 10.1358/dof.2009.034.12.1443434
  178. Lo R.Y., Figueroa K.P., Pulst S.M. et al. Coenzyme Q10 and spinocerebellar ataxias. Move. Disord. 2015; 30(2): 214–220. doi: 10.1002/mds.26088

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Changes in the tricomponent Purkinje cell synapse in neurodegeneration and possible molecular targets for the treatment of cerebellar degeneration. Functioning NMDAR contain the GluN1 subunit, which is why it is not indicated on the image.

Download (165KB)

Copyright (c) 2022 Belozor O.S., Shuvaev A.N., Fritsler Y.V., Shuvaev A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies