Multiple system atrophy: diagnostic methods and biomarkers

Cover Page

Cite item

Full Text

Abstract

Multiple system atrophy (MSA) is a neurodegenerative disease belonging to a group of synucleinopathies and characterized by significant autonomic failure, parkinsonian syndrome, and cerebellar signs. Diagnostic criteria used currently were updated in 2022. While the clinical method and neuroimaging are typically diagnostic in MSA, new modalities are currently emerging. Novel candidate biomarkers are being intensively and thoroughly studied.

The review analyzes the clinical picture and diagnostic criteria of the disease, describes imaging methods for diagnosing synucleinopathies, as well as known laboratory markers of multiple system atrophy.

About the authors

Maksim N. Andreev

Research Center of Neurology

Email: max_andreev@mail.ru
ORCID iD: 0000-0002-3718-6238

postgraduate student, 5th Neurology department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Ekaterina Yu. Fedotova

Research Center of Neurology

Author for correspondence.
Email: ekfedotova@neurology.ru
ORCID iD: 0000-0001-8070-7644

D. Sci. (Med.), leading researcher, Head, 5th Neurology department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

References

  1. Fanciulli A., Wenning G.K. Multiple-system atrophy. New Engl. J. Med. 2015; 372(3): 249–263. doi: 10.1056/NEJMra1311488
  2. Jellinger K.A. Multiple system atrophy: An oligodendroglioneural synucleinopathy. J. Alzheimer’s Dis. 2018; 62(3): 1141–1179. doi: 10.3233/JAD-170397
  3. Bjornsdottir A., Gudmundsson G., Blondal H., Olafsson E. Incidence and prevalence of multiple system atrophy: a nationwide study in Iceland. J. Neurol. Neurosurg. Psychiatry. 2013; 84(2): 136–140. doi: 10.1136/jnnp-2012-302500
  4. Palma J.A., Norcliffe-Kaufmann L., Kaufmann H. Diagnosis of multiple system atrophy. Auton. Neurosci. 2018; 211: 15–25. doi: 10.1016/j.autneu.2017.10.007
  5. Coon E.A., Singer W., Low P.A. Pure autonomic failure. Mayo Clin. Proc. 2019; 94(10): 2087–2098. doi: 10.1016/j.mayocp.2019.03.009
  6. Koga S., Sekiya H., Kondru N. et al. Neuropathology and molecular diagnosis of Synucleinopathies. Mol. Neurodegenerat. 2021; 16(1): 83. doi: 10.1186/s13024-021-00501-z
  7. Wenning G.K., Stankovic I., Vignatelli L. et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 2022; 37(6): 1131–1148. doi: 10.1002/mds.29005
  8. Köllensperger M., Geser F., Seppi K. et al. Red flags for multiple system atrophy. Mov. Disord. 2008; 23(8): 1093–1099. doi: 10.1002/mds.21992
  9. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology. 1996; 46(5): 1470–1470. doi: 10.1212/wnl.46.5.1470
  10. Mendoza-Velásquez J.J., Flores-Vázquez J.F., Barrón-Velázquez E. et al. Autonomic dysfunction in α-synucleinopathies. Front. Neurol. 2019; 10: 363. doi: 10.3389/fneur.2019.00363
  11. Ewing D.J., Martyn C.N., Young R.J., Clarke B. F. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985; 8(5): 491–498. doi: 10.2337/diacare.8.5.491
  12. Baschieri F., Calandra-Buonaura G., Doria A. et al. Cardiovascular autonomic testing performed with a new integrated instrumental approach is useful in differentiating MSA-P from PD at an early stage. Parkinsonism Relat. Disord. 2015; 21(5). C: 477–482. doi: 10.1016/j.parkreldis.2015.02.011
  13. Fanciulli A., Jordan J., Biaggioni I. et al. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS): Endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin. Autonom. Res. 2018; 28(4): 355–362. doi: 10.1007/s10286-018-0529-8
  14. Vernino S., Low P.A. Autonomic Neuropathies. Elsevier, 2007: 979–986. doi: 10.1016/B978-012088592-3/50091-8
  15. Coon E., Fealey R.D., Sletten D.M. et al. Anhidrosis in multiple system atrophy involves pre- and postganglionic sudomotor dysfunction. Mov. Disord. 2017; 32(3): 397–404. doi: 10.1002/mds.26864
  16. Iodice V., Lipp A., Ahlskog J.E. et al. Autopsy confirmed multiple system atrophy cases: Mayo experience and role of autonomic function tests. J. Neurol. Neurosurg. Psychiatry. 2012; 83(4): 453–459. doi: 10.1136/jnnp-2011-301068
  17. Nojszewska M., Potulska-Chromik A., Jamrozik Z. et al. Electrophysiolo- gical and clinical assessment of dysautonomia in multiple system atrophy (MSA) and progressive supranuclear palsy (PSP): a comparative study. Neurol. Neurochir. Polska. 2019; 53(1): 26–33. doi: 10.5603/PJNNS.a2019.0005
  18. Shindo K., Fukao T., Kurita N. et al. Sympathetic outflow to skin predicts central autonomic dysfunction in multiple system atrophy. Neurol. Sci. 2020. 41(8): 2241–2248. doi: 10.1007/s10072-020-04340-6
  19. Bloch F., Pichon B., Bonnet A.M. et al. Urodynamic analysis in multiple system atrophy: Characterisation of detrusor-sphincter dyssynergia. J. Neurol. 2010; 257(12): 1986–1991. doi: 10.1007/s00415-010-5645-x
  20. Kim M., Jung J.H., Park J. et al. Impaired detrusor contractility is the pathognomonic urodynamic finding of multiple system atrophy compared to idiopathic Parkinson’s disease. Parkinsonism Relat. Disord. 2015; 21(3): 205–210. doi: 10.1016/j.parkreldis.2014.12.003
  21. Xing T., Ma J., Jia C., Ou T. Neurogenic lower urinary tract dysfunction predicts prognosis in patients with multiple system atrophy. Clin. Auton. Res. 2020; 30(3): 247–254. doi: 10.1007/s10286-020-00678-1
  22. Hahn K., Ebersbach G. Sonographic assessment of urinary in multiple system atrophy and idiopathic Parkinson’s disease. Mov. Disord. 2005; 20(11): 1499–1502. doi: 10.1002/mds.20586
  23. Krismer F., Pinter B., Mueller C. et al. Sniffing the diagnosis: Olfactory testing in neurodegenerative parkinsonism. Parkinsonism Relat. Disord. 2017; 35: 36–41. doi: 10.1016/j.parkreldis.2016.11.010
  24. Xia C., Postuma R.B. Diagnosing multiple system atrophy at the prodromal stage. Clin. Auton. Res. 2020; 30(3): 197–205. doi: 10.1007/s10286-020-00682-5
  25. Palma J.A., Fernandez-Cordon C., Coon E.A. et al. Prevalence of REM sleep behavior disorder in multiple system atrophy: a multicenter study and meta-analysis. Clin. Autonom. Res. 2015; 25(1): 69–75. doi: 10.1007/s10286-015-0279-9
  26. Cortelli P., Calandra-Buonaura G., Benarroch E.E. et al. Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment. Neurology. 2019; 93(14): 630–639. doi: 10.1212/WNL.0000000000008208
  27. Gandor F., Vogel A., Claus I. et al. Laryngeal movement disorders in multiple system atrophy: a diagnostic biomarker? Mov. Disord. 2020; 35(12): 2174–2183. doi: 10.1002/mds.28220
  28. Warnecke T., Vogel A., Ahring S. et al. The shaking palsy of the larynx — potential biomarker for multiple system atrophy: a pilot study and literature review. Front. Neurol. 2019; 10: 1–12. doi: 10.3389/fneur.2019.00241
  29. Gilman S., Wenning G.K., Low P.A. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008; 71(9): 670–676. doi: 10.1212/01.wnl.0000324625.00404.15
  30. Bajaj S., Krismer F., Palma J. et al. Diffusion-weighted MRI distinguishes Parkinson disease from the parkinsonian variant of multiple system atrophy: a systematic review and meta-analysis. PLoS ONE. 2017; 12(12): e0189897. doi: 10.1371/journal.pone.0189897
  31. Kim M., Ahn J.H., Cho Y. et al. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci. Rep. 2019; 9(1): 1–7. doi: 10.1038/s41598-019-53980-y
  32. Beliveau V., Krismer F., Skalla E. et al. Characterization and diagnostic potential of diffusion tractography in multiple system atrophy. Parkinsonism Relat. Disord. 2021; 85: 30–36. doi: 10.1016/j.parkreldis.2021.02.027
  33. Krismer F., Seppi K., Göbel G. et al. Morphometric MRI profiles of multiple system atrophy variants and implications for differential diagnosis. Mov. Disord. 2019; 34(7): 1041–1048. doi: 10.1002/mds.27669
  34. Kadodwala V.H., Hadjivassiliou M., Currie S. et al. Is 1H-MR spectroscopy useful as a diagnostic aid in MSA-C? Cerebellum Ataxias. 2019; 6(1): 1–8. doi: 10.1186/s40673-019-0099-0
  35. Chandran V., Stoessl A.J. Imaging in multiple system atrophy. Neurol. Clin. Neurosci. 2014; 2(6): 178–187. doi: 10.1111/ncn3.125
  36. Thobois S., Prange S., Scheiber C., Broussolle E. What a neurologist should know about PET and SPECT functional imaging for parkinsonism: a practical perspective. Parkinsonism Relat. Disord. 2019; 59: 93–100. doi: 10.1016/j.parkreldis.2018.08.016
  37. Zhou H.Y., Huang P., Sun Q. et al. The role of substantia nigra sonography in the differentiation of Parkinson’s disease and multiple system atrophy. Transl. Neurodegener. 2018; 7(1): 1–7. doi: 10.1186/s40035-018-0121-0
  38. Федотова Е.Ю., Чечеткин А.О., Иллариошкин С.Н. Возможности транскраниальной сонографии в диагностике экстрапирамидных заболеваний. Анналы клинической и экспериментальной неврологии. 2010; 4(4): 43–50. Fedotova E.Yu., Chechetkin A.O., Illarioshkin S.N. Possibilities of transcranial sonography in extrapyramidal disorders Annals of Clinical and Experimental Neurology. 2010; 4(4): 43–50. (In Russ.)
  39. Cong S., Xiang C., Wang H., Cong S. Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis. J. Neurol. 2021; 268: 2703–2712. doi: 10.1007/s00415-020-09781-9
  40. Laurens B., Constantinescu R., Freeman R. et al. Fluid biomarkers in multiple system atrophy: a review of the MSA Biomarker Initiative. Neurobiol. Dis. 2015; 80: 29–41. doi: 10.1016/j.nbd.2015.05.004
  41. Bungeroth M., Appenzeller S., Regulin A. et al. Differential aggregation properties of alpha-synuclein isoforms. Neurobiol. Aging. 2014; 35(8): 1913–1919. doi: 10.1016/j.neurobiolaging.2014.02.009
  42. Brudek T., Winge K., Rasmussen N.B. et al. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains. J. Neurochem. 2016; 136(1): 172–185. doi: 10.1111/jnc.13392
  43. Miglis M.G., Larsen N., Muppidi S. RT-QUiC in multiple system atrophy: the biomarker of the future? and other updates on recent autonomic research. Clin. Autonomic Res. 2021; 31(1): 47–49. doi: 10.1007/s10286-021-00767-9
  44. Rumund A. van, Green A.J.E., Fairfoul G. et al. α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. Ann. Neurol. 2019; 85(5): 777–781. doi: 10.1002/ana.25447
  45. Shahnawaz M., Mukherjee A., Pritzkow S. et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020; 578(7794): 273–277. doi: 10.1038/s41586-020-1984-7
  46. Ge F., Ding J., Liu Y. et al. Cerebrospinal fluid NFL in the differential diagnosis of parkinsonian disorders: a meta-analysis. Neurosci. Lett. 2018; 685: 35–41. doi: 10.1016/j.neulet.2018.07.030
  47. Hu X., Yang Y., Gong D. Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: a meta-analysis. Neurol. Sci. 2017; 38(3): 407–414. doi: 10.1007/s10072-016-2783-7
  48. Palleis C., Morenas-Rodriguez E., Murcia F.J.M. et al. Longitudinal correlation between neurofilament light chain and UMSARS in Multiple System Atrophy. Clin. Neurol. and Neurosurg. 2020; 195: 105924. doi: 10.1016/j.clineuro.2020.105924
  49. Wang Y., Wei X., Zou J. et al. Contra-directional expression of serum homocysteine and uric acid as important biomarkers of multiple system atrophy severity: a cross-sectional study. Front. Cell Neurosci. 2015; 9: 1–11. doi: 10.3389/fncel.2015.00247
  50. Abraham A., Drory V.E. Influence of serum uric acid levels on prognosis and survival in amyotrophic lateral sclerosis: a meta-analysis. J. Neurol. 2014; 261(6): 1133–1138. doi: 10.1007/s00415-014-7331-x
  51. Zhang X., Liu D.S., An C.Y. et al. Association between serum uric acid level and multiple system atrophy: a meta-analysis. Clin. Neurol. Neurosurg. 2018; 169: 16–20. doi: 10.1016/j.clineuro.2018.03.023
  52. Monzio Compagnoni G., Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol. Commun. 2019; 7(1): 113. doi: 10.1186/s40478-019-0730-6
  53. Compta Y., Giraldo D.M., Muñoz E. et al. Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism Relat. Disord. 2018; 46: 16–23. doi: 10.1016/j.parkreldis.2017.10.010
  54. Kasai T., Tokuda T., Ohmichi T. et al. Serum levels of coenzyme Q10 in patients with multiple system atrophy. PLoS ONE. 2016; 11(1): 1–7. doi: 10.1371/journal.pone.0147574
  55. Mitsui J., Matsukawa T., Yasuda T. et al. Plasma coenzyme Q10 levels in patients with multiple system atrophy. JAMA Neurol. 2016; 73(8): 977–980. doi: 10.1001/jamaneurol.2016.1325
  56. Donadio V., Incensi A., El-Agnaf O. et al. Skin α-synuclein deposits differ in clinical variants of synucleinopathy: an in vivo study. Sci. Rep. 2018; 8(1): 14246. doi: 10.1038/s41598-018-32588-8
  57. Donadio V., Incensi A., Rizzo G. et al. Skin biopsy may help to distinguish multiple system atrophy–Parkinsonism from Parkinson’s disease with orthostatic hypotension. Mov. Disord. 2020; 35(9): 1649–1657. doi: 10.1002/mds.28126
  58. Miglis M.G., Muppidi S. Can skin biopsy differentiate Parkinson disease from multiple system atrophy? And other updates on recent autonomic research. Clin. Autonomic Res. 2020; 30(4): 287–289. doi: 10.1007/s10286-020-00712-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Andreev M.N., Fedotova E.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies