A method of inhibiting the ABCB1 protein in the blood-brain barrier in vivo

Cover Page

Cite item

Full Text

Abstract

Introduction. Increased functional activity of the P-glycoprotein transporter (ABCB1) in the blood-brain barrier (BBB) is a possible reason why neuroprotective pharmacotherapy is ineffective after ischaemic stroke.

Study aim — to develop a way to inhibit the functional activity of ABCB1 at the BBB.

Materials and methods. The study was performed on 60 male Wistar rats weighing 200-280 g. The functional activity of ABCB1 at the BBB was assessed by measuring the plasma and cortical levels of the marker transporter substrate fexofenadine (intravenous administration of 10 mg/kg). Thirty minutes before the administration of fexofenadine, 1 ml/kg of intravenous saline (n = 30) or 17.6 mg/kg of omeprazole, the transporter's systemic inhibitor (n = 30), was administered to the rats. The total amount of fexofenadine in the systemic circulation and the cerebral cortex was assessed using high performance liquid chromatography, by calculating the area under the blood concentration–time curve (AUC0-t(plasma)) or the cerebral cortex concentration (AUC0-t(brain)). BBB permeability was calculated using the ratio AUC0-t(brain)/AUC0-t(plasma).

Results. The administration of omeprazole before fexofenadine did not affect the plasma level of the latter at any time point under analysis. Fexofenadine’s AUC0-t(plasma) also did not differ between the series. However, the administration of omeprazole increased the cortical level of fexofenadine by 2.96 times (p = 0.009), 5 minutes after administration of the latter, and increased the AUC0-t(brain) by 1.49 times (p = 0.012). AUC0-t(brain)/AUC0-t(plasma) increased by 1.71 times when omeprazole was used (p = 0.003). Therefore, omeprazole inhibits the functional activity of ABCB1 at the BBB.

Conclusions. We developed and tested a method for inhibiting ABCB1 activity at the BBB.

About the authors

Ivan V. Chernykh

Ryazan State Medical University

Email: ivchernykh88@mail.ru
ORCID iD: 0000-0002-5618-7607

Сand. Sci. (Biol), Head, Department of pharmaceutical chemistry

Russian Federation, Ryazan

Alexey V. Shchulkin

Ryazan State Medical University

Email: alekseyshulkin@rambler.ru
ORCID iD: 0000-0003-1688-0017

D. Sci. (Med), Associated Professor, Professor, Department of pharmacology

Russian Federation, Ryazan

Pavel Yu. Mylnikov

Ryazan State Medical University

Email: pavelmylnikov@mail.ru
ORCID iD: 0000-0001-7829-2494

Assistant, Department of pharmacology

Russian Federation, Ryazan

Ekaterina E. Kirichenko

Ryazan State Medical University

Author for correspondence.
Email: ekaterinakir2013@yandex.ru
ORCID iD: 0000-0003-3511-7033

Cand. Sci. (Biol.), Associated Professor, Department of pharmaceutical chemistry

Russian Federation, Ryazan

Maria V. Gatsanoga

Ryazan State Medical University

Email: mvgatsanoga@mail.ru
ORCID iD: 0000-0002-1116-6271

Cand. Sci. (Med), Assistant, Department of pharmacology

Russian Federation, Ryazan

Elena N. Yakusheva

Ryazan State Medical University

Email: e.yakusheva@rzgmu.ru
ORCID iD: 0000-0001-6887-4888

D. Sci. (Med), Professor, Head, Department of pharmacology

Russian Federation, Ryazan

References

  1. Linlin S.C., Yan C., Mruc D.D. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int. J. Biochem. Cell Biol. 2009; 41(12): 2578–2587. doi: 10.1016/j.biocel.2009.08.015
  2. Zhou Q., Ruan Z.R., Yuan H. et al. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie. 2013; 68(2): 129–134.
  3. Гацанога М.В., Черных И.В., Щулькин А.В. и др. Можно ли оценивать принадлежность лекарственных веществ к субстратам гликопротеина-P на самках кроликов породы Шиншилла. Наука молодых (Eruditio Juvenium). 2016; 4(4): 5–10. Gatsanoga M.V., Chernykh I.V., Shchulkin A.V. et al. The method of assessment of drugs belonging to the substrates of P-glycoprotein on female rabbits. Nauka molodykh (Eruditio Juvenium). 2016; 4(4): 5–10.
  4. Vilas-Boas V., Silva R., Nunes C. et al. Mechanisms of P-gp inhibition and effects on membrane fluidity of a new rifampicin derivative, 1,8-dibenzoyl-rifampicin. Toxicol. Lett. 2013; 220(3): 259–266. doi: 10.1016/j.toxlet.2013.05.005
  5. Черных И.В., Якушева Е.Н. Влияние экспериментальной подострой гипобарической гипоксической гипоксии на функциональную активность гликопротеина-P. Российский медико-биологический вестник им. акад. И.П. Павлова. 2013; 1(1): 60–64. Yakusheva E.N., Chernykh I.V. The influence of experimental subacute hypo- baric hypoxia on P-glycoprotein functional activity. Rossiyskiy mediko-biologicheskiy vestnik im. akad. I.P. Pavlova. 2013; 1(1): 60–64.
  6. Ma A., Wang C., Chen Y. et al. P-glycoprotein alters blood-brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy. Drug Des. Devel. Ther. 2013; 7: 1447–454. doi: 10.2147/DDDT.S52533
  7. Mohamed L.A., Keller J.N., Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer’s disease mouse model. Biochim. Biophys. Acta. 2016; 1862(4): 778–787. doi: 10.1016/j.bbadis.2016.01.013
  8. Lee C., Choi J., Choi D. Effects of pravastatin on the pharmacokinetic para- meters of nimodipine after oral and intravenous administration in rats: Possible role of CYP3A4 inhibition by pravastatin. Ind. J. Pharmacol. 2012; 44(5): 624–628. doi: 10.4103/0253-7613.100395
  9. Youdim K.A., Qaiser M.Z., Begley D.J. et al. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med. 2004; 36(5): 592–604. doi: 10.1016/j.freeradbiomed.2003.11.023
  10. Comerford K.M., Karhausen J., Louis N.A. et al. Hypoxia-inducible Factor-1-dependent Regulation of the Multidrug Resistance (MDR1) Gene. Cancer Res. 2002; 62: 3387–3394.
  11. Cen J., Liu L., Li M.S. et al. Alteration in P-glycoprotein at the blood–brain barrier in the early period of MCAO in rats. J. Pharm. Pharmacol. 2013; 65: 665–672. doi: 10.1111/jphp.12033
  12. Ding Z.J., Yang L., Xie X. et al. Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. Cancer Res. Clin. Oncol. 2010; 136(11): 1697–1707. doi: 10.1007/s00432-010-0828-5
  13. Черных И.В., Якушева Е.Н., Щулькин А.В. и др. Экспрессия гликопротеина-P в гематоэнцефалическом барьере при двухсторонней окклюзии общих сонных артерий. Научные ведомости Белгородского государственного университета. 2015; 29(4): 91–95. Chernykh I.V., Yakusheva E.N., Shchulkin A.V. et al. P-glycoprotein expression in blood-brain barrier in bilateral occlusion of the common carotid artery. Nauchnyye vedomosti Belgorodskogo gosudarstvennogo universiteta. 2015; 29(4): 91–95. (In Russ.)
  14. Jauch E.C., Saver J.L., Adams H.P. et al. Guidelines for the early management of patients with acute ischemic stroke. A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013; 44(3): 870–947. doi: 10.1161/STR.0b013e318284056a
  15. O’Brien F.E., Dinan T.G., Griffin B.T. et al. Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. Br. J. Pharmacol. 2012; 165(2): 289–312. doi: 10.1111/j.1476-5381.2011.01557.x
  16. Yang Z., Vakkalagadda B., Shen G. et al. Inhibitory effect of ketoconazole on the pharmacokinetics of a multireceptor tyrosine kinase inhibitor BMS–690514 in healthy participants: assessing the mechanism of the interaction with physiologically-based pharmacokinetic simulations. J. Clin. Pharmacol. 2013; 2: 217–227. doi: 10.1177/0091270012439208
  17. Thai K.M., Huynh N.T., Ngo T.D. et al. Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks. SAR QSAR Environ Res. 2015; 2: 139–63. doi: 10.1080/1062936X.2014.995701
  18. Salaroglio I.C., Abate C., Rolando B. et al. Validation of thiosemicarbazone compounds as P-Glycoprotein inhibitors in human primary brain–blood barrier and glioblastoma stem cells. Mol. Pharmaceutics. 2019; 16(8): 3361–3373. doi: 10.1021/acs.molpharmaceut.9b00018
  19. Zhou Y.-G., Li K.-Y., Li H.-D. Effect of the novel antipsychotic drug perospirone on P-glycoprotein function and expression in Caco-2 cells. Eur. J. Clin. Pharmacol. 2008; 64(7): 697–703. doi: 10.1007/s00228-008-0487-5
  20. Riganti C., Salaroglio I.C., Pinzòn-Daza M.L. et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol. Life Sci. 2014; 71(3): 499–516. doi: 10.1007/s00018-013-1397-y
  21. Bauer M., Karch R., Zeitlinger M. et al. Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study. Clin. Trial J. Cereb. Blood Flow Metab. 2015; 35(5): 743–746. doi: 10.1038/jcbfm.2015.19
  22. Liu L., Collier A.C., Link J.M. et al. Modulation of P-glycoprotein at the human blood-brain barrier by quinidine or rifampin treatment: a positron emission tomography imaging study. Drug Metab. Dispos. 2015; 4(11): 1795–1804. doi: 10.1124/dmd.114.058685
  23. Pauli-Magnus C., Rekersbrink S., Klotz U. et al. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol. 2001; 364(6): 551–557. doi: 10.1007/s00210-001-0489-7
  24. Yasar S., Zafar I., Lateef A. et al. Effect of omeprazole on the pharmacokinetics of rosuvastatin in healthy male volunteers. Am. J. Therapeutics. 2016; 23(6): 1514–1523. doi: 10.1097/MJT.0000000000000221
  25. Regardh C.J., Gabrielsson M., Hoffman K.J. et al. Pharmacokinetics and metabolism of omeprazole in animals and man – an overview. Scand. J. Gastroenterol. 1985; 108: 79–94. doi: 10.3109/00365528509095821
  26. Andersson T., Cederberg C., Heggelund A. et al. The pharmacokinetics of single and repeated once-daily doses of 10, 20 and 40 mg omeprazole as ente- ric-coated granules. Drug Invest. 1991; 3(1): 45–52.
  27. Черных И.В., Щулькин А.В., Мыльников П.Ю. и др. Методика анализа функциональной активности АВСВ1-белка в гематоэнцефалическом барьере. В сб.: Биология в высшей школе: актуальные вопросы науки, образования и междисциплинарной интеграции. Материалы Всероссийской научной конференции с международным участием. Рязань; 2019: 98–100. Chernykh I.V., Shchulkin A.V., Mylnikov P.Yu. et al. Method of analysis of the functional activity of the ABCB1 protein in the blood-brain barrier. In: Biology in higher education: topical issues of science, education and interdisciplinary integration. Materials of the All-Russian scientific conference with international participation. Ryazan; 2019: 98–100. (In Russ.)
  28. Lee C., Choi J., Choi D. Effects of pravastatin on the pharmacokinetic parameters of nimodipine after oral and intravenous administration in rats: Possible role of CYP3A4 inhibition by pravastatin. Ind. J. Pharmacol. 2012; 44(5): 624–628. doi: 10.4103/0253-7613.100395
  29. Jha N.K., Kar R., Niranjan R. ABC transporters in neurological disorders: an important gateway for botanical compounds mediated neuro-therapeutics. Curr. Top. Med. Chem. 2019; 19(10): 795–798. doi: 10.2174/1568026619666190412121811
  30. Yano K., Takimoto S., Motegi T. et al. Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain. Drug Metab. Pharmacokinet. 2014; 29(3): 254–258. doi: 10.2133/dmpk.dmpk-13-rg-072
  31. Rehakova R., Cebova M., Matuskova Z. Brain cholesterol and the role of statins in neuroprotection. Act. Nerv. Super Rediviva. 2016; 58(1): 11–17.
  32. Kumar A., Ekavali M., Mishra J. et al. Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction. Psychopharmacology (Berl). 2016; 233(1): 137–152. doi: 10.1007/s00213-015-4095-7
  33. Feng B., Mills J.B., Davidson R.E. et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos. 2008; 36: 268–275. doi: 10.1124/dmd.107.017434
  34. Якушева Е.Н., Сычев Д.А., Щулькин А.В. и др. Оценка принадлежности лекарственных препаратов к ингибиторам и индукторам белка-транспортера гликопротеина-P в эксперименте in vivo. Экспериментальная и клиническая фармакология. 2018; 81(1): 17–23. Yakusheva E.N., Sychev D.A., Shchul’kin A.V. et al. In vivo assessment of drugs belonging to inhibitors and inductors of p-glycoprotein. Eksperimental’naya i klinicheskaya farmakologiya. 2018; 81(1): 17–23. (In Russ.)
  35. Watanabe K., Furuno K., Eto K. et al. First-pass metabolism of omeprazole in rats. J. Pharm. Sci. 1994; 83(8): 1131–1134. doi: 10.1002/jps.2600830812
  36. Tournier N., Goutal S., Auvity S. et al. Strategies to inhibit ABCB1- and ABCG2-mediated efflux transport of erlotinib at the blood-brain barrier: a PET study on nonhuman primates. J. Nucl. Med. 2017; 58(1): 117–122. doi: 10.2967/jnumed.116.178665
  37. Damont A., Goutal S., Auvity S. et al. Imaging the impact of cyclosporin A and dipyridamole on P-glycoprotein (ABCB1) function at the blood-brain barrier: a [11C]-N-desmethyl-loperamide PET study in nonhuman primates. Eur. J. Pharm. Sci. 2016; 91: 98–104. doi: 10.1016/j.ejps.2016.06.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the plasma fexofenadine level after intravenous administration of 10 mg/kg of fexofenadine to rats in the control group and in the group that received omeprazole (17.6 mg/kg intravenously).

Download (65KB)
3. Fig. 2 Changes in the cortical fexofenadine level after intravenous admi- nistration of 10 mg/kg of fexofenadine to rats in the control group and in the group that received omeprazole (17.6 mg/kg intravenously).

Download (58KB)

Copyright (c) 2022 Chernykh I.V., Shchulkin A.V., Mylnikov P.Y., Kirichenko E.E., Gatsanoga M.V., Yakusheva E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies