Identification of RNA markers associated with Parkinson's disease using multiplex gene expression analysis

Abstract

Introduction. Parkinson's disease (PD) is a neurodegenerative disorder, and the development of biomarkers is essential due to complicated PD diagnosis and progression assessment.

Objective. To identify PD RNA markers by multiplex expression profiling of 760 genes associated with the main neuropathological processes.

Materials and methods. We studied the expression of 760 genes associated with the main neuropathological processes using Nanostring nCounter® Human Neuropathology Panel in 29 blood samples obtained from PD patients, including 13 samples from those in the early stage and 16 samples from those in the advanced stage, and in 16 control blood samples.

Results. The comparison of gene expression in the patients with early PD and in the controls demonstrated differential expression of genes CDKN1A and CPT1B. The comparison of gene expression in the patients with advanced PD and in the controls showed LRP1 upregulation in the advanced PD group. We also revealed СPT1B upregulation in advanced disease, with a positive correlation between СPT1B expression and PD duration.

Discussion. The variably expressed genes may be relevant as PD biomarkers for diagnosis and progression assessment.

About the authors

Natalia S. Ardashirova

Research Center of Neurology

Email: ardashirova.n@yandex.ru
ORCID iD: 0000-0002-4813-9912

PhD student, Neurogenetic department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Natalia Yu. Abramycheva

Research Center of Neurology

Email: nataabr@rambler.ru
ORCID iD: 0000-0001-9419-1159

Cand. Sci. (Biol.), leading researcher, Head, DNA laboratory, Neurogenetic department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Ekaterina Yu. Fedotova

Research Center of Neurology

Email: ekfedotova@gmail.com
ORCID iD: 0000-0001-8070-7644

D. Sci. (Med.), Head, Neurogenetic department

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Vladimir S. Sukhorukov

Research Center of Neurology

Email: vsukhorukov@gmail.com
ORCID iD: 0000-0002-0552-6939

D. Sci. (Med.), Prof., Head, Neuromorphology laboratory

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Anastasiya S. Voronkova

Research Center of Neurology

Email: anast.voronkova@gmail.com
ORCID iD: 0000-0001-5788-5178

Cand. Sci. (Biol.)

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Natalia M. Mudzhiri

Research Center of Neurology

Email: Mudzhirinm@gmail.com
ORCID iD: 0000-0002-3835-6622

junior researcher, Neuromorphology laboratory

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

Sergey N. Illarioshkin

Research Center of Neurology

Author for correspondence.
Email: ardashirova.n@yandex.ru
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., RAS Full Member, Deputy Director for Science; Director, Brain Institute

Russian Federation, 125367, Moscow, Volokolamskoye shosse, 80

References

  1. Erkkinen M.G., Kim M.O., Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018; 10(4): a033118. doi: 10.1101/cshperspect.a033118
  2. Tysnes O.B., Storstein A. Epidemiology of Parkinson’s disease. J. Neural. Transm. 2017; 124(8): 901–905. doi: 10.1007/s00702-017-1686-y
  3. Kalinderi K., Bostantjopoulou S., Fidani L. The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol. Scand. 2016; 134(5): 314–326. doi: 10.1111/ane.12563
  4. Deng H., Wang P., Jankovic J. The genetics of Parkinson disease. Ageing Res. Rev. 2018; 42: 72–85. doi: 10.1016/j.arr.2017.12.007
  5. Cheng H.C., Ulane C.M., Burke R.E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010; 67(6): 715–725. doi: 10.1002/ana.21995
  6. Postuma R.B., Berg D., Stern M. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015; 30(12): 1591–1601. doi: 10.1002/mds.26424
  7. Rizzo G., Copetti M., Arcuti S. et al. Accuracy of clinical diagnosis of Parkinson disease. Neurology. 2016; 86(6): 566–576. doi: 10.1212/WNL.0000000000002350
  8. Armstrong M.J., Okun M.S. Diagnosis and treatment of Parkinson disease. JAMA. 2020; 323(6): 548. doi: 10.1001/jama.2019.22360
  9. Vijiaratnam N., Simuni T., Bandmann O. et al. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021; 20(7): 559–572. doi: 10.1016/S1474-4422(21)00061-2
  10. Lang A.E., Espay A.J. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov. Disord. 2018; 33(5): 660–677. doi: 10.1002/mds.27360
  11. Parnetti L., Gaetani L., Eusebi P. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019; 18(6): 573–586. doi: 10.1016/S1474-4422(19)30024-9
  12. Goytain A., Ng T. NanoString nCounter technology: high-throughput RNA validation. Methods Mol. Biol. 2020; 2079: 125–139. doi: 10.1007/978-1-4939-9904-0_10
  13. Santiago J.A., Potashkin J.A. Evaluation of RNA blood biomarkers in individuals at risk of Parkinson’s disease. J. Parkinsons Dis. 2017; 7(4): 653–660. doi: 10.3233/JPD-171155
  14. Santiago J.A., Bottero V., Potashkin J.A. Evaluation of RNA blood biomarkers in the Parkinson’s disease biomarkers program. Front Aging Neurosci. 2018; 10: 157. doi: 10.3389/fnagi.2018.00157
  15. Shamir R., Klein C., Amar D. et al. Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology. 2017; 89(16): 1676–1683. doi: 10.1212/WNL.0000000000004516
  16. Scherzer C.R., Eklund A.C., Morse L.J. et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Nat. Acad. Sci. 2007; 104(3): 955–960. doi: 10.1073/pnas.0610204104
  17. Liu X., Wang Q., Yang Y. et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson’s disease. Acta Neuropathol. Commun. 2021; 9(1): 37. doi: 10.1186/s40478-021-01133-6
  18. Lanke V., Moolamalla S.T.R., Roy D., Vinod P.K. Integrative analysis of hippocampus gene expression profiles identifies network alterations in aging and Alzheimer’s disease. Front. Aging Neurosci. 2018; 10: 153. doi: 10.3389/fnagi.2018.00153
  19. Santos-Lobato B.L., Vidal A.F., Ribeiro-dos-Santos Â. Regulatory miRNA–mRNA networks in Parkinson’s disease. Cells. 2021; 10(6): 1410. doi: 10.3390/cells10061410
  20. Pattarini R., Rong Y., Shepherd K.R. et al. Long-lasting transcriptional refractoriness triggered by a single exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine. Neuroscience. 2012; 214: 84–105. doi: 10.1016/j.neuroscience.2012.03.047
  21. Yang L., Liu C.C., Zheng H. et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. J. Neuroinflammation. 2016; 13(1): 304. doi: 10.1186/s12974-016-0772-7
  22. Wilhelmus M.M.M., Bol J.G.J.M., van Haastert E.S. et al. Apolipoprotein E and LRP1 increase early in Parkinson’s disease pathogenesis. Am. J. Pathol. 2011; 179(5): 2152–2156. doi: 10.1016/j.ajpath.2011.07.021
  23. Strauss K.M., Martins L.M., Plun-Favreau H. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet. 2005; 14(15): 2099–2111. doi: 10.1093/hmg/ddi215
  24. Li W., Fu Y., Halliday G.M., Sue C.M. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease. Front. Cell Dev. Biol. 2021; 9. doi: 10.3389/fcell.2021.612476
  25. Сухоруков В.С., Воронкова А.С., Литвинова Н.А. и др. Роль индивидуальных особенностей митохондриальной ДНК в патогенезе болезни Паркинсона. Генетика. 2020; 56(4): 392–400. Sukhorukov V.S., Voronkova A.S., Litvinova N.A. The role of individual features of mitochondrial DNA in the pathogenesis of Parkinson’s disease. Genetics. 2020; 56(4): 392–400. (In Russ.) doi: 10.31857/S0016675820040141
  26. Devi L., Raghavendran V., Prabhu B.M. et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 2008; 283(14): 9089–9100. doi: 10.1074/jbc.M710012200
  27. Malpartida A.B., Williamson M., Narendra D.P. et al. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem. Sci. 2021; 46(4): 329–343. doi: 10.1016/j.tibs.2020.11.007
  28. Park J.S., Davis R.L., Sue C.M. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018; 18(5): 21. doi: 10.1007/s11910-018-0829-3
  29. Balestrino R., Schapira A.H.V. Parkinson disease. Eur. J. Neurol. 2020; 27(1): 27–42. doi: 10.1111/ene.14108
  30. Sevigny J., Chiao P., Bussière T. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016; 537(7618): 50–56. doi: 10.1038/nature19323

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Correlation between the CPT1B expression level and PD duration.

Download (42KB)

Copyright (c) 2022 Ardashirova N.S., Abramycheva N.Y., Fedotova E.Y., Sukhorukov V.S., Voronkova A.S., Mudzhiri N.M., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies