Prognostic value of the Charlson comorbidity index in patients aged 60 years and older starting chronic dialysis treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Objective. Evaluation of the prognostic role of the Charlson comorbidity index (CCI) as a predictor of fatal outcome in a cohort of patients ≥60 years old with stage 5 chronic kidney disease (stage 5 CKD).

Material and methods. Analysis of data from 246 patients ≥60 years old with stage 5 CKD.

Results. A univariate analysis was performed, predictors of fatal outcome: age ≤65 years, CCI >5 points, diuresis ≤350 ml/day, presence of hyperhydration, predialysis creatinine levels (pdCr) ≤514 µmol/l, predialysis urea levels (pdU) >44 mmol/l, glomerular filtration rate (GFR) according to the CKD-EPI formula ≤3.1 ml/min/1.73 m2. Multivariate analysis, predictors of fatal outcome: age >65 years (hazard ratio - HR=1.7, 95% confidence interval - CI 1.1–2.4), CCI >5 points (HR=3, 95% CI 2–4, 4), pdCr ≤514 µmol/l (HR=2.7, 95% CI 1.7–4.5) and pdU >44 mmol/l (HR=1.8, 95% CI 1.2–2, 9).

Conclusion. CCI can be used when choosing treatment tactics for patients aged ≥60 years with stage 5 CKD along with other generally accepted predictors of fatal outcome (pdCr, pdU, age).

About the authors

Kristina A. Kurylovich

Institute for Advanced Training and Retraining of Healthcare Personnel, Belarusian State Medical University; 1st City Clinical Hospital

Author for correspondence.
Email: khruns89@gmail.com
ORCID iD: 0000-0002-9112-4863

Postgraduate Student at the Department of Urology and Nephrology, Institute of Advanced Training and Retraining of Healthcare Personnel, Belarusian State Medical University; Nephrologist, Hemodialysis Department, 1st City Clinical Hospital

Belarus, Minsk; Minsk

Kirill S. Komissarov

Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology

Email: kirill_ka@tut.by
ORCID iD: 0000-0002-2648-0642

Cand.Sci. (Med.), Associate Professor, Head of the Department of Nephrology, Renal Replacement Therapy and Kidney Transplantation

Belarus, Minsk

Olga V. Krasko

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Email: kirill_ka@tut.by
ORCID iD: 0000-0002-4150-282X

Cand. Sci. (Tech), Leading Researcher at the Laboratory of Bioinformatics

Belarus, Minsk

References

  1. Boenink R., et al. The ERA Registry Annual Report 2019: summary and age comparisons. Clin. Kidney J. 2022;15:452–72.
  2. Alper S., et al. The Comparison Of The Comorbidities Of Patients With Peritoneal Dialysis And Hemodialysis With The Charlson Comorbidity Index. J. Contempor. Med. 2023;13:258–62.
  3. Santos J., et al. Predicting 6-month mortality in incident elderly dialysis patients: a simple prognostic score. Kidney Blood Pressure Res. 2020;45:38–50.
  4. Hussain J.A., Mooney A., Russon L. Comparison of survival analysis and palliative care involvement in patients aged over 70 years choosing conservative management or renal replacement therapy in advanced chronic kidney disease. Palliativ. Med. 2013;27:829–39.
  5. Tagliente F., et al. Unplanned initiation of hemodialysis in elderly patients with chronic kidney disease: risk factors for short term mortality. Nephrology Dialysis Transplantation. 2023;38:774-75.
  6. Stirland L.E., et al. Measuring multimorbidity beyond counting diseases: systematic review of community and population studies and guide to index choice. BMJ. 2020;368.
  7. Наумова О.А., Эфрос Л.А. Распространенные методы оценки коморбидности (обзор литературы). Междунар. научно-исследовательский журн. 2022;126:56. [Naumova O.A., Efros L.A. Common methods for evaluating comorbidity (literature review). Int. Res. J. 2022;126:56 (In Russ.)].
  8. Charlson M.E., et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chron. Dis. 1987;40:373–83.
  9. Hsu Y.T., et al. Administrative and claims data help predict patient mortality in intensive care units by logistic regression: a nationwide database study. BioMed Res. Int. 2020;2020.
  10. Zöller B., et al. Association of short-term mortality of venous thromboembolism with family history of venous thromboembolism and Charlson comorbidity index. Thromb. Haemostas. 2019;119:48–55.
  11. Hall R.E., et al. Developing an adapted Charlson comorbidity index for ischemic stroke outcome studies. BMC. Health Serv. Res. 2019;19:1–9.
  12. Shebeshi D.S., Dolja-Gore X., Byles J. Charlson Comorbidity Index as a predictor of repeated hospital admission and mortality among older women diagnosed with cardiovascular disease. Aging Clin. Exp. Res. 2021:1–6.
  13. Armiñanzas C., et al. Role of age and comorbidities in mortality of patients with infective endocarditis. Eur. J. Internal Med. 2019;64:63-71.
  14. Murat D.A.Ş., et al. Prediction of mortality with Charlson Comorbidity Index in super-elderly patients admitted to a tertiary referral hospital. Cukurova Med. J. 2022;47:199–207.
  15. Ng Y.Y., et al. Progression in comorbidity before hemodialysis initiation is a valuable predictor of survival in incident patients. Nephrol. Dial. Transplant. 2013;28:1005–12.
  16. Rattanasompattikul M., et al. Charlson comorbidity score is a strong predictor of mortality in hemodialysis patients. Int. Urol. Nephrol. 2012;44:1813–23.
  17. Inker L.A., et al. New creatinine-and cystatin C-based equations to estimate GFR without race. New Engl. J. Med. 2021;385:1737–49.
  18. Hothorn T., Lausen B. On the exact distribution of maximally selected rank statistics. Computat. Stat. Data Analys. 2003;43:121–37.
  19. Wachterman M.W., et al. One-year mortality after dialysis initiation among older adults. JAMA. Int. Med. 2019;179:987–90.
  20. Lin Y., et al. Association between the Charlson Comorbidity Index and the risk of 30-day unplanned readmission in patients receiving maintenance dialysis. BMC. Nephrol. 2019;20:1–8.
  21. McArthur E., et al. Comparing five comorbidity indices to predict mortality in chronic kidney disease: a retrospective cohort study. Canad. J. Kidney Health Dis. 2018;5:2054358118805418.
  22. FitzGerald T.J. et al. A review of supportive care for older people with advanced chronic kidney disease. Clin. Kidney J. 2023;16:635–46.
  23. Murtagh F.E.M., et al. Supportive care: comprehensive conservative care in end-stage kidney disease. Clin. J. Am. Society Nephrol: CJASN. 2016;11:1909.
  24. Gelfand S.L., Scherer J.S., Koncicki H.M. Kidney supportive care: core curriculum 2020. Am. J. Kidney Dis. 2020;75:793–806.
  25. Курилович К.А., Комиссаров К.С., Красько О.В. Хронический диализ у пациентов пожилого и старческого возраста: выживаемость и факторы, влияющие на исход. Опыт одного центра. Клин. нефрология. 2023;1:58–64. [Kurylovich K.A., Komissarov K.S., Krasko O.V. Chronic dialysis in elderly and senile patients: survival and factors affecting outcome. Single-center experience. Clin. Nephrol. 2023;1:58–64 (In Russ.)].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The cohort of the study

Download (134KB)
3. Fig. 2. Distribution of ICF in patients >60 years old starting treatment with chronic dialysis

Download (52KB)
4. Fig. 3. Cumulative survival of the study cohort

Download (89KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».