Molecular mechanisms of inflammation in the development of heart failure: A review

Cover Page

Cite item

Full Text

Abstract

Cardiovascular diseases continue to be the main cause of hospital mortality and lead to great disability of the working population. Numerous clinical and experimental studies have shown that inflammation is the main factor causing the growth and progression of atherosclerosis. Despite significant progress in basic therapy aimed at both preventing the development of heart failure (HF) and treating it, the prognosis in patients after their first hospitalization remains extremely unfavorable. HF is the leading cause of morbidity and mortality worldwide. Various stimuli at different stages of HF pathophysiology trigger a cascade of proinflammatory reactions with the release of interleukins, the formation of reactive oxygen species, mitochondrial DNA damage and the induction of autophagy. Based on the presented results from experimental and clinical studies, it can be expected that a better understanding of the molecular aspects in the pathophysiology of HF will open opportunities for the development of new therapeutic monoclonal antibodies.

About the authors

Yuri I. Buziashvili

Bakulev National Medical Research Center of Cardiovascular Surgery

Email: editor@omnidoctor.ru
ORCID iD: 0000-0001-7016-7541

D. Sci. (Med.), Prof., Acad. RAS

Russian Federation, Moscow

Elmira U. Asymbekova

Bakulev National Medical Research Center of Cardiovascular Surgery

Email: editor@omnidoctor.ru
ORCID iD: 0000-0002-5422-2069

D. Sci. (Med.)

Russian Federation, Moscow

Elvina F. Tugeeva

Bakulev National Medical Research Center of Cardiovascular Surgery

Email: editor@omnidoctor.ru
ORCID iD: 0000-0003-1751-4924

D. Sci. (Med.)

Russian Federation, Moscow

Akmal Z. Rakhimov

Bakulev National Medical Research Center of Cardiovascular Surgery

Email: editor@omnidoctor.ru
ORCID iD: 0000-0002-9370-9419

Cand. Sci. (Med.)

Russian Federation, Moscow

Lusine S. Shakhnazaryan

Bakulev National Medical Research Center of Cardiovascular Surgery

Email: editor@omnidoctor.ru
ORCID iD: 0000-0001-7900-6728

Cand. Sci. (Med.)

Russian Federation, Moscow

Firdavsdzhon R. Akildzhonov

Bakulev National Medical Research Center of Cardiovascular Surgery

Author for correspondence.
Email: firdavs96_tths@mail.ru
ORCID iD: 0000-0002-1675-4216

Graduate Student

Russian Federation, Moscow

References

  1. Avagimyan A, Gvianishvili T, Gogiashvili L, et al. Chemotherapy, hypothyroidism and oral dysbiosis as a novel risk factor of cardiovascular pathology development. Curr Probl Cardiol. 2023;48(3):101051. doi: 10.1016/j.cpcardiol.2021.101051
  2. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575-84. doi: 10.1016/j.cjca.2017.12.005
  3. Quinn KL, Stall NM, Yao Z, et al. The risk of death within 5 years of first hospital admission in older adults. CMAJ. 2019;191(50):E1369-77. doi: 10.1503/cmaj.190770
  4. Savarese G, Lund LH. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):7-11. doi: 10.15420/cfr.2016:25:2
  5. Behnoush AH, Khalaji A, Naderi N, et al. ACC/AHA/HFSA 2022 and ESC 2021 guidelines on heart failure comparison. ESC Heart Fail. 2023;10(3):1531-44. doi: 10.1002/ehf2.14255
  6. Chioncel O, Lainscak M, Seferovic PM, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19(12):1574-85. doi: 10.1002/ejhf.813
  7. Tromp J, Khan MA, Klip IT, et al. Biomarker Profiles in Heart Failure Patients with Preserved and Reduced Ejection Fraction. J Am Heart Assoc. 2017;6(4):e003989. doi: 10.1161/JAHA.116.003989
  8. Tromp J, Westenbrink BD, Ouwerkerk W, et al. Identifying Pathophysiological Mechanisms in Heart Failure with Reduced Versus Preserved Ejection Fraction. J Am Coll Cardiol. 2018;72(10):1081-90. doi: 10.1016/j.jacc.2018.06.050
  9. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092
  10. Jia G, Aroor AR, Hill MA, Sowers JR. Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension. 2018;72(3):537-48. doi: 10.1161/HYPERTENSIONAHA.118.11065
  11. Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J Cardiovasc Dev Dis. 2023;10(1):19. doi: 10.3390/jcdd10010019
  12. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268-77. doi: 10.1001/jama.2013.2024
  13. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301(4):383-92. doi: 10.1001/jama.2009.2
  14. O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32-43. doi: 10.1056/NEJMoa1100171
  15. NHFA CSANZ Heart Failure Guidelines Working Group; Atherton JJ, Sindone A, De Pasquale CG, et al. National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018. Heart Lung Circ. 2018;27(10):1123-208. doi: 10.1016/j.hlc.2018.06.1042
  16. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236-41. doi: 10.1056/NEJM199007263230405
  17. Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol. 2021;12:695047. doi: 10.3389/fphys.2021.695047
  18. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117-29. doi: 10.1038/nri3800
  19. Strassheim D, Dempsey EC, Gerasimovskaya E, et al. Role of Inflammatory Cell Subtypes in Heart Failure. J Immunol Res. 2019;2019:2164017. doi: 10.1155/2019/2164017
  20. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505-22. doi: 10.1038/s41569-018-0064-2
  21. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14(1):30-8. doi: 10.1038/nrcardio.2016.163
  22. Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol. 2022;13:866097. doi: 10.3389/fimmu.2022.866097
  23. Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther. 2017;179:1-16. doi: 10.1016/j.pharmthera.2017.05.002
  24. Mojsilovic-Petrovic J, Callaghan D, Cui H, et al. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation. 2007;4:12. doi: 10.1186/1742-2094-4-12
  25. Greenberg B. Medical Management of Patients With Heart Failure and Reduced Ejection Fraction. Korean Circ J. 2022;52(3):173-97. doi: 10.4070/kcj.2021.0401
  26. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594-602. doi: 10.1161/01.CIR.0000124490.27666.B2
  27. Ridker PM, Rane M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ Res. 2021;128(11):1728-46. doi: 10.1161/CIRCRESAHA.121.319077
  28. Anker SD, Coats AJ. How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol. 2002;86(2-3):123-30. doi: 10.1016/s0167-5273(02)00470-9
  29. Chung ES, Packer M, Lo KH, et al; Anti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133-40. doi: 10.1161/01.CIR.0000077913.60364.D2
  30. Van Tassell BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013;128(17):1910-23. doi: 10.1161/CIRCULATIONAHA.113.003199
  31. Giovannini S, Onder G, Liperoti R, et al. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc. 2011;59(9):1679-85. doi: 10.1111/j.1532-5415.2011.03570.x
  32. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. doi: 10.3390/ijms20236008
  33. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373-84. doi: 10.1038/ni.1863
  34. Liu L, Wang Y, Cao ZY, et al. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med. 2015;19(12):2728-40. doi: 10.1111/jcmm.12659
  35. Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res. 2017;113(13):1538-50. doi: 10.1093/cvr/cvx130
  36. Gao P, Yang W, Sun L. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. Oxid Med Cell Longev. 2020;2020:3120539. doi: 10.1155/2020/3120539
  37. Gelmetti V, De Rosa P, Torosantucci L, et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 2017;13(4):654-69. doi: 10.1080/15548627.2016.1277309
  38. Wang Y, Zhang X, Wen Y, et al. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol. 2021;9:774989. doi: 10.3389/fcell.2021.774989
  39. Wang S, Binder P, Fang Q, et al. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol. 2018;175(8):1293-304. doi: 10.1111/bph.13888

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies