Markers and genetic predictors of osteoporosis in routine clinical practice

Cover Page

Cite item

Full Text

Abstract

The review aimed to provide information on main characteristics of calcium and phosphate metabolism, osteoporosis markers, genetic predictors of the disorder and their significance in clinical practice. Osteoporosis is a common problem of public healthcare that is often underestimated. The disorder is often diagnosed retrospectively after a fragility fracture. About 25% of fragility fractures are associated with secondary osteoporosis or with other causes of calcium and phosphorus metabolism disorders. Estimation of main indicators of calcium and phosphate metabolism: calcium and phosphorus is necessary for osteoporosis differential diagnosis. Markers of bone remodeling such as bone-specific alkaline phosphatase, osteocalcin, N-terminal propeptide of type 1 procollagen, and C-terminal telopeptide of type 1 collagen are important in dynamics assessment of osteoporosis treatment effectiveness and should be used more widely. The use of COL1A1, CALCR, VDR genes polymorphisms analysis for assessment of susceptibility to osteoporosis development is a question under consideration and requires further investigations. In order to write this review we analyzed Russian and foreign literature mostly published in the last 5 years and dedicated to the problem of osteoporosis. On the basis of literature study a deep understanding of specificities of the use of calcium and phosphate metabolism characteristics, osteoporosis markers and gene polymorphism in routine clinical practice was formed. Therefore, the presented material is quite practical for clinical physicians.

About the authors

Tatiana A. Grebennikova

Endocrinology Research Centre

Email: grebennikova@hotmail.com
Cand. Sci. (Med.) Moscow, Russia

Viktoriia V. Troshina

Endocrinology Research Centre

Email: for.troshina@gmail.com
Resident Moscow, Russia

Zhanna E. Belaia

Endocrinology Research Centre

Email: jannabelaya@gmail.com
D. Sci. (Med.), Full Prof. Moscow, Russia

References

  1. Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Проблемы эндокринологии. 2017; 63 (6): 392-426.
  2. Zagzag J, Hu M.I, Fisher S.B, Perrier N.D. Hypercalcemia and cancer: Differential diagnosis and treatment. CA Cancer J Clin 2018; 68 (5): 377-86. doi: 10.3322/caac.21489
  3. Попова И.Ю., Гребенникова Т.А., Тюльпаков А.Н. и др. Редкие заболевания костной ткани: клиническое наблюдение семьи с несовершенным остеогенезом и фосфопенической формой остемаляции. Остеопороз и остеопатии. 2018; 21 (1): 28-33.
  4. Chong W.H, Molinolo A.A, Chen C.C, Collins M.T. Tumor-induced osteomalacia. Endocr Relat Cancer 2011; 18 (3): R53-77. doi: 10.1530/ERC-11-0006
  5. Hlaing T.T, Compston J.E. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem 2014; 51 (Pt 2): 189-202. doi: 10.1177/0004563213515190
  6. Whyte M.P. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology 2016; 12 (4): 233-46. doi: 10.1038/nrendo.2016.14
  7. Wheater G, Elshahaly M, Tuck S et al. The clinical utility of bone marker measurements in osteoporosis. J Translat Med 2013; 11: 201.
  8. Ларина В.Н., Михайлусова В.П., Распопова Т.Н. Применение биохимических маркеров костного обмена в повседневной деятельности врача. Лечебное дело. 2015; 2: 10-4.
  9. Rathore B, Manisha S, Vishnu K, Aparna M. Osteocalcin: an emerging biomarker for bone turnover. Int J Res Med Sci 2016; 4 (9): 3670-4. doi.org/10.18203/2320-6012.ijrms20162899
  10. Панкратова Ю.В., Пигарова Е.А., Дзеранова Л.К. Витамин К-зависимые белки: остеокальцин, матриксный Gla-белок и их внекостные эффекты. Ожирение и метаболизм. 2013; 2: 11-4.
  11. Ivaska K.K. Urinary Osteocalcin as a Marker of Bone Metabolism. Clin Chem 2005; 51 (3): 618-8. doi: 10.1373/clinchem.2004.043901
  12. Jagtap V.R, Ganu J.V, Nagane N.S. BMD and Serum Intact Osteocalcin in Postmenopausal Osteoporosis Women. Ind J Clin Biochem 2010; 26 (1): 70-3. doi: 10.1007/s12291-010-0074-2
  13. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. и др. Возможности маркера костного обмена - остеокальцина - для диагностики эндогенного гиперкортицизма и вторичного остеопороза. Остеопороз и остеопатии. 2011; 2: 7-10.
  14. Ayesha A, Vanitha G.M.N. Serum osteocalcin levels in metabolic syndrome. Int J Clin Biochem Res 2016; 3 (4): 453-60. doi: 10.18231/2394-6377.2016.0024
  15. Bilotta F.L, Arcidiacono B, Messineo S et al. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine 2017; 59 (3): 622-32. doi: 10.1007/s12020-017-1396-0
  16. Reyes García R, Rozas Moreno P, Muñoz-Torres M. Osteocalcin and atherosclerosis: A complex relationship. Diabetes Res Clin Practice 2011; 92 (3); 405-6. doi: 10.1016/j.diabres.2010.08.019
  17. Moser S.C, van der Eerden B.C. Osteocalcin - A Versatile Bone-Derived Hormone. Front Endocrinol 2019; 9: 794. doi: 10.3389/fendo.2018.00794
  18. Seibel M.J. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26: 97-122.
  19. Koivula M-K, Ruotsalainen V, Bjorkman M et al. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 2010; 47: 67-71.
  20. Brown J.P, Albert C, Nassar B.A et al. Bone turnover markers in the management of osteoporosis. Clin Biochem 2009; 42: 929-42.
  21. Машейко И.В. Биохимические маркеры в оценке процессов ремоделирования костной ткани при остеопении и остеопорозе. Журн. Гродненского государственного медицинского университета. 2017; 2: 149-53.
  22. Iftikhar A, Tousif S. Ahmed, Asim T. Review of Bone Turn over Biomarkers for Early Diagnose of Osteoporosis. JAMMR 2018; 26 (8): 1-8.
  23. Greenblatt M, Tsai J, Wein M. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 2016; 63: 464-74.
  24. Vasikaran S, Cooper C, Eastell R et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011; 49: 1271-4.
  25. Arslan M, Cogendez E, Eken M et al. Serum beta crosslaps as a predictor for osteoporosis in postmenopausal women. Istanbul Tıp Fakultesi Dergisi Cilt 2015; 78 (2): 36-40. doi: 10.18017/iuitfd.m.13056441.2015.78/2.36-40
  26. Riera-Espinoza G.S, Cordero Y, Mendoza S et al. Early P1NP Suppression during Treatment of Low Bone Mass Postmenopausal Women with Risedronate 150 mg once-a Month. Ortho Rheum Open Access J 2017; 8 (2): 555732. doi: 10.19080/OROAJ.2017.08.555732
  27. Dal Prá K.J, Lemos C.A.A., Okamoto R et al. Efficacy of the C-terminal telopeptide test in predicting the development of bisphosphonate-related osteonecrosis of the jaw: a systematic review. Int J Oral Maxillofacial Surg 2017; 46 (2): 151-6. doi: 10.1016/j.ijom.2016.10.009
  28. Wichers M, Schmidt E, Bidlingmaier F, Klingmuller D. Diurnal rhythm of crosslaps in human serum. Clin Chem 1999; 45:1858-60.
  29. Delanaye P, Souberbielle J, Lafage-Proust M et al. Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 2013; 29: 997-1004.
  30. Bardai G, Moffatt P, Glorieux F.H, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporosis Int 2016; 27 (12): 3607-13. doi: 10.1007/s00198-016-3709-1
  31. Малыгина А.А., Гребенникова Т.А., Тюльпаков А.Н., Белая Ж.Е. Несовершенный остеогенез как причина летального исхода. Остеопороз и остеопатии. 2018; 21 (1): 23-7.
  32. Mann V, Ralston S. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 2003; 32 (6): 711-7. doi: 10.1016/s8756-3282(03)00087-5
  33. Mann V, Hobson E.E, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001; 107 (7): 899-907. doi: 10.1172/JCI10347
  34. Москаленко М.В., Асеев М.В., Котова С.М., Баранов В.С. Анализ ассоциации аллелей генов COLLAL, VDR и CALCR с развитием остеопороза. Экологическая генетика человека. 2004; 2 (1): 38-43.
  35. Huebner A.K, Keller J, Catala-Lehnen P et al. The role of calcitonin and a-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys 2008; 473 (2): 210-7. doi: 10.1016/j.abb.2008.02.013
  36. Wimalawansa S. Physiology of Calcitonin and Its Therapeutic Uses. Reference Module Biomed Sci 2018; 1: 178-91. doi: 10.1016/B978-0-12-801238-3.95758-1
  37. Russell F.A, King R, Smillie S-J et al. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiological Rev 2014; 94 (4): 1099-142. doi: 10.1152/physrev.00034.2013
  38. Chaiya I, Rattanakul C. An impulsive mathematical model of bone formation and resorption: effects of parathyroid hormone, calcitonin and impulsive estrogen supplement. Adv Difference Equations 2017; 2017 (1): 153. doi: 10.1186/s13662-017-1206-2
  39. Шилина Н.М., Сорокина Е.Ю., Иванушкина Т.А. и др. Изучение полиморфизма rs11801197 гена рецептора кальцитонина (CALCR) у женщин и детей Москвы с различным уровнем костной прочности. Вопр. питания. 2017; 86 (1): 28-34.
  40. Zimmermann A, Popp R.A, Rossmann H et al. Gene variants of osteoprotegerin, estrogen-, calcitonin- and vitamin D-receptor genes and serum markers of bone metabolism in patients with Gaucher disease type 1. Ther Clinical Risk Management 2018; 14: 2069-80. doi: 10.2147/tcrm.s177480
  41. Masi L, Becherini L, Gennari L et al. Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem Biophys Res Commun 1998; 245 (2): 622-6.
  42. Taboulet J, Frenkian M, Frendo JL et al. Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet 1998; 7 (13): 2129-33.
  43. Мальцев А.В. Исследование генетических факторов развития постменопаузального остеопороза в Волго-Уральском регионе. Автореф. дис. … канд. биол. наук. Уфа, 2014.
  44. Holick M.F. Vitamin D deficiency. N Engl J Med 2007; 357: 266-81.
  45. Qin G, Dong Z, Zeng P. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep 2013; 40: 497-506. https://doi.org/10.1007/s11033-012-2086-x
  46. Chantarangsu S, Sura T, Mongkornkarn S et al. Vitamin D Receptor Gene Polymorphism and Smoking in the Risk of Chronic Periodontitis. J Periodontology 2016; 87: 1343-51. https://doi.org/10.1902/jop.2016.160222
  47. Zhang L, Yin X, Wang J et al. Associations between VDR Gene Polymorphisms and Osteoporosis Risk and Bone Mineral Density in Postmenopausal Women: A systematic review and Meta-Analysis. Sci Rep 2018; 8 (1): 981. doi: 10.1038/s41598-017-18670-7
  48. Jin H, Evangelou E, Ioannidis J.P.A, Ralston S.H. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporosis Int 2010; 22 (3): 911-21. doi: 10.1007/s00198-010-1364-5
  49. Bustamante M, Nogués X, Enjuanes A et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women. Osteoporosis Int 2006; 18 (2): 235-43. doi: 10.1007/s00198-006-0225-8
  50. Sowers M, Willing M, Burns T et al. Genetic Markers, Bone Mineral Density, and Serum Osteocalcin Levels. J Bone Min Res 1999; 14 (8): 1411-9. doi: 10.1359/jbmr.1999.14.8.1411

Copyright (c) 2019 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies