Mesenchymal stem cells in tuberculosis therapy

Cover Page

Cite item

Full Text

Abstract

Tuberculosis, caused by the obligate intracellular microorganism Mycobacterium tuberculosis, is one of the oldest known infectious diseases in humans. Modern therapy of tuberculosis, consisting of several antibacterial drugs, is long-term, toxic and requires high compliance from the patient, therefore, the development of new therapeutic strategies that would minimize the duration of treatment and prevent the formation of drug-resistant forms of mycobacteria is relevant and important. Cellular therapy now holds the promise of potential complementary therapeutic options for the treatment of drug-resistant tuberculosis. In recent years, the possibilities of using mesenchymal stem cells in the treatment of tuberculosis of various localization have been widely studied. The use of such cells in conjunction with standard anti-tuberculosis therapy holds great promise for shortening the duration of treatment and reducing the formation of drug-resistant mycobacteria. This article describes the possibilities of using mesenchymal stem cells in the treatment of tuberculosis in patients, including those with extensive and multidrug resistance, as well as the mechanisms of interaction of mesenchymal stem cells with M. tuberculosis.

About the authors

Anna N. Remezova

Saint Petersburg State University

ординатор каф. Saint Petersburg, Russia

Anna A. Gorelova

Saint Petersburg State University; Saint Petersburg Research Institute of Phtisiopulmonology

Email: gorelova_a@yahoo.com
мл. науч. сотр. Saint Petersburg, Russia

Alexander N. Muraviev

Saint Petersburg Research Institute of Phtisiopulmonology; Saint Petersburg Medico-Social Institute

канд. мед. наук, ученый секретарь Saint Petersburg, Russia

Tatjana I. Vinogradova

Saint Petersburg Research Institute of Phtisiopulmonology

д-р мед. наук, проф., гл. науч. сотр. Saint Petersburg, Russia

Andrey I. Gorelov

Saint Petersburg State University; Pokrovskaya Municipal Hospital

д-р мед. наук, проф., зав. отд-нием Saint Petersburg, Russia

Alexander I. Gorbunov

Saint Petersburg Research Institute of Phtisiopulmonology

мл. науч. сотр. Saint Petersburg, Russia

Nadezhda V. Orlova

Saint Petersburg Research Institute of Phtisiopulmonology

науч. сотр. Saint Petersburg, Russia

Natalya M. Yudintseva

Institute of Cytology

канд. биол. наук, ст. науч. сотр. Saint Petersburg, Russia

Yulia A. Nashchekina

Institute of Cytology

канд. биол. наук, науч. сотр. Saint Petersburg, Russia

Magomedsadyk G. Sheykhov

Saint Petersburg Research Institute of Phtisiopulmonology

аспирант Saint Petersburg, Russia

Petr K. Yablonsky

Saint Petersburg State University; Saint Petersburg Research Institute of Phtisiopulmonology

д-р мед. наук, проф., дир. Saint Petersburg, Russia

References

  1. Васильева И.А., Белиловский Е.М., Борисов С.Е., Стерликов С.А. Туберкулез с множественной лекарственной устойчивостью возбудителя в странах мира и в Российской Федерации. Туберкулез и болезни легких. 2017;95(11):5-17
  2. Global Tuberculosis Report 2018. WHO/CDS/TB/2018.20. Geneva, World Health Organization, 2018; p. 95-6.
  3. Иванова Д.А., Борисов С.Е., Родина О.В., и др. Безопасность режимов лечения больных туберкулезом с множественной лекарственной устойчивостью возбудителя согласно новым рекомендациям ВОЗ 2019 г. Туберкулез и болезни легких. 2020;98(1):5-15
  4. Бурмистрова И.А., Самойлова А.Г., Тюлькова Т.Е., и др. Лекарственная устойчивость M. tuberculosis (исторические аспекты, современный уровень знаний). Туберкулез и болезни легких. 2020;98(1):54-61
  5. Кульчавеня Е.В. Служба внелегочного туберкулеза в Сибири и на Дальнем Востоке. Туберкулез и болезни легких. 2019;97(1):7-11
  6. Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371(8):723-32.
  7. Mbuagbaw L, Guglielmetti L, Hewison C, et al. Outcomes of bedaquiline treatment in patients with multidrug-resistant tuberculosis. Emerg Infect Dis. 2019;25(5):936-43. doi: 10.3201/eid2505.181823
  8. Singh B, Cocker D, Ryan H, et al. Linezolid for drug-resistant tuberculosis. Cochrane Database Syst Rev. 2017;2017(11):CD012836. doi: 10.1002/14651858.CD012836
  9. World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. WHO/CDS/TB/2019.3. Geneva, World Health Organization, 2019.
  10. Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis. 2004;84(1-2):29-44. doi: 10.1016/j.tube.2003.08.003
  11. Levitte S, Adams KN, Berg RD, et al. Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe. 2016;20(2):250-8. doi: 10.1016/j.chom.2016.07.007
  12. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263(5147):678-81. doi: 10.1126/science.8303277
  13. van der Wel N, Hava D, Houben D, et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell. 2007;129(7):1287-98. doi: 10.1016/j.cell.2007.05.059
  14. Raghuvanshi S, Sharma P, Singh S, et al. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc Natl Acad Sci. 2010;107(50):21653-8. doi: 10.1073/pnas.1007967107
  15. Espinal MA, Laszlo A, Simonsen L, et al. Global trends in resistance to antituberculosis drugs. New Engl J Med. 2001;344(17):1294-303. doi: 10.1056/NEJM200104263441706
  16. Fatima S, Kamble SS, Dwivedi VP, et al. Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J Clin Invest. 2020;130(2):655-61. doi: 10.1172/JCI128043
  17. Das B, Kashino SS, Pulu I, et al. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci Transl Med. 2013;5(170):170. doi: 10.1126/scitranslmed.3004912
  18. Khan A, Mann L, Papanna R, et al. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep. 2017;7(1):1-15. doi: 10.1038/s41598-017-15290-z
  19. Tardif S, Ross C, Bergman P,et al. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. J Gerontol A Biol Sci Med Sci. 2015;70(5):577-88. doi: 10.1093/gerona/glu101
  20. Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753-66. doi: 10.1016/j.cell.2004.11.038
  21. Parida SK, Madansein R, Singh N, et al. Cellular therapy in tuberculosis. Int J Infect Dis. 2015;32:32-8. doi: 10.1016/j.ijid.2015.01.016
  22. Shah NS, Wright A, Bai GH, et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis. 2007;13(3):380. doi: 10.3201/eid1303.061400
  23. Wakamoto Y, Dhar N, Chait R, et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science. 2013;339(6115):91-5. doi: 10.1126/science.1229858
  24. Cohen KA, Abeel T, McGuire AM, et al. Evolution of extensively drug-resistant tuberculosis over four decades revealed by whole genome sequencing of Mycobacterium tuberculosis from KwaZulu-Natal, South Africa. IntJMycobacteriol. 2015;4:24-5. doi: 10.1016/j.ijmyco.2014.11.028
  25. Velayati AA, Masjedi MR, Farnia P, et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest. 2009;136(2):420-5. doi: 10.1378/chest.08-2427
  26. Skrahin A, Ahmed RK, Ferrara G, et al. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir Med. 2014;2(2):108-22. doi: 10.1016/S2213-2600(13)70234-0
  27. Matthay MA, Goolaerts A, Howard JP, et al. Mesenchymal Stem Cells for Acute Lung Injury: Preclinical Evidence. Crit Care Med. 2010;38(10):569-73. doi: 10.1097/CCM.0b013e3181f1ff1d
  28. Mei SH, McCarter SD, Deng Y, et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269. doi: 10.1371/journal.pmed.0040269
  29. Tropea KA, Leder E, Aslam M, et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):829-37. doi: 10.1152/ajplung.00347.2011
  30. Spees JL, Olson SD, Whitney MJ, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103(5):1283-8. doi: 10.1073/pnas.0510511103
  31. Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759-65. doi: 10.1038/nm.2736
  32. Sinclair K, Yerkovich ST, Chambers DC. Mesenchymal stem cells and the lung. Respirology. 2013;18(3):397-411. doi: 10.1111/resp.12050
  33. Ерохин В.В., Васильева И.А., Коноплянников А.Г., и др. Системная трансплантация аутологичных мезенхимальных стволовых клеток костного мозга в лечении больных множественным лекарственно-устойчивым туберкулезом легких. Туберкулез и болезни легких. 2008;85(10):3-6 [Erohin VV, Vasil'eva IA, Konoplyannikov AG, et al. Sistemnaia transplantatsiia autologichnykh mezenkhimal'nykh stvolovykh kletok kostnogo mozga v lechenii bol'nykh mnozhestvennym lekarstvenno-ustoichivym tuberkulezom legkikh. Tuberkulez i bolezni legkikh. 2008;85(10):3-6 (in Russian)].
  34. Danjuma L, Mok PL, Higuchi A, et al. Modulatory and regenerative potential of transplanted bone marrow-derived mesenchymal stem cells on rifampicin-induced kidney toxicity. Regen Ther. 2018;9:100-10. doi: 10.1016/j.reth.2018.09.001
  35. Yudintceva NM, Bogolyubova IO, Muraviov AN, et al. Application of the allogenic mesenchymal stem cells in the therapy of the bladder tuberculosis. J Tissue Eng Regen Med. 2018;12(3):1580-93. doi: 10.1002/term.2583
  36. Орлова Н.В., Муравьев А.Н., Блюм Н.М., и др. Экспериментальная реконструкция мочевого пузыря кролика с использованием аллогенных клеток различного тканевого происхождения. Медицинский альянс. 2016;1:50-2
  37. Гусейнова Ф.М., Виноградова Т.И., Заболотных Н.В., и др. Влияние клеточной терапии мезенхимными клетками стромы костного мозга на процессы репарации при экспериментальном туберкулезном сальпингите. Медицинский альянс. 2017;3:35-43.
  38. Ариэль Б.М., Гусейнова Ф.М., Виноградова Т.И., и др. Мезенхимные клетки стромы костного мозга при туберкулезе гениталий у кроликов (экспериментальное исследование с морфологическим контролем). Обзоры по клинической фармакологии и лекарственной терапии. 2017;15(2):47-55

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies