The role of microRNA in the diagnosis of cardiovascular diseases in obese patients

Cover Page

Cite item

Full Text

Abstract

Obesity remains a global problem in modern society. It is commonly associated with an increased risk of cardiovascular diseases (CVD). The search for specific and sensitive biomarkers of CVD continues. Currently, a lot of studies focused on the potential role of microRNA (miRNA) in CVD development and progression. MiRNAs are involved in various pathological disorders associated with CVD. Endothelial dysfunction is considered as the initial step in the pathogenesis of many CVD, and atherosclerosis in particular. Altered expression of several miRNAs is associated with the development of endothelial dysfunction. Some miRNAs are considered as potential therapeutic targets. Further studies to evaluate the role of miRNAs in the pathogenesis of CVD are needed. It will improve the diagnosis and treatment of CVD in patients with obesity.

About the authors

Teona A. Shvangiradze

Clinic K+31

Email: teona.endo@gmail.com
канд. мед. наук Moscow, Russia

Irina Z. Bondarenko

Endocrinology Research Centre

д-р мед. наук Moscow, Russia

Ekaterina A. Troshina

Endocrinology Research Centre

Moscow, Russia

References

  1. Khan LK, Bowman BA. Obesity: A major global public health problem. Annu Rev Nutr. 1999;19. doi: 10.1146/annurev.nutr.19.1.0
  2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121. doi: 10.3810/pgm.2009.11.2074
  3. Zhou SS, Jin JP, Wang JQ, et al. MiRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges review-article. Acta Pharmacol Sin. 2018;39. doi: 10.1038/aps.2018.30
  4. Jonk AM, Houben AJHM, De Jongh RT, et al. Microvascular dysfunction in obesity: A potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22. doi: 10.1152/physiol.00012.2007
  5. Echahidi N, Mohty D, Pibarot P, et al. Obesity and metabolic syndrome are independent risk factors for atrial fibrillation after coronary artery bypass graft surgery. Circulation. 2007;116. doi: 10.1161/CIRCULATIONAHA.106.681304
  6. Vanhoutte PM. Endothelial dysfunction - The first step toward coronary arteriosclerosis. Circ J. 2009;73. doi: 10.1253/circj.CJ-08-1169
  7. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease. Obes Res. 2003;11. doi: 10.1038/oby.2003.174
  8. Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018;34. doi: 10.1016/j.cjca.2017.12.005
  9. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12. doi: 10.1038/nrg3074
  10. Tufekci KU, Oner MG, Meuwissen RLJ, Gent; 5. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107. doi: 10.1007/978-1-62703-748-8_3
  11. Pordzik J, Jakubik D, Jarosz-Popek J, et al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: Bioinformatic analysis and review. Cardiovasc Diabetol. 2019;18. doi: 10.1186/s12933-019-0918-x
  12. Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А., Шестакова М.В. МикроРНК в диагностике сердечно-сосудистых заболеваний, ассоциированных с сахарным диабетом 2-го типа и ожирением. Терапевтический архив. 2016;88(10):87-92
  13. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes Nutr. 2017;12. doi: 10.1186/s12263-017-0577-z
  14. Kozomara A, Birgaoanu M, Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47. doi: 10.1093/nar/gky1141
  15. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of Mammalian MicroRNA Targets. Cell. 2003;115. doi: 10.1016/S0092-8674(03)01018-3
  16. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23. doi: 10.1161/01.ATV.0000051384.43104.FC
  17. Lerman A, Burnett JC. Intact and altered endothelium in regulation of vasomotion. Circulation. 1992;86.
  18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation. 2005;111. doi: 10.1161/01.CIR.0000153339.27064.14
  19. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3. doi: 10.1096/fasebj.3.1.2642868
  20. Epstein FH, Vane JR, Anggard EE, Botting RM. Regulatory Functions of the Vascular Endothelium. N Engl J Med. 1990;323. doi: 10.1056/nejm199007053230106
  21. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15. doi: 10.1097/01.ASN.0000132474.50966.DA
  22. Stapleton PA, James ME, Goodwill AG, Frisbee JC. Obesity and vascular dysfunction. Pathophysiology. 2008;15. doi: 10.1016/j.pathophys.2008.04.007
  23. Avogaro A, De Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360. doi: 10.1016/j.cccn.2005.04.020
  24. Gamez-Mendez AM, Vargas-Robles H, Rios A, Escalante B. Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10. doi: 10.1371/journal.pone.0138609
  25. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11. doi: 10.1038/sj.cdd.4401451
  26. Kaplon RE, Chung E, Reese L, et al. Activation of the unfolded protein response in vascular endothelial cells of Nondiabetic obese adults. J Clin Endocrinol Metab. 2013;98. doi: 10.1210/jc.2013-1841
  27. Bharath LP, Cho JM, Park SK, et al. Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol. 2017;37. doi: 10.1161/ATVBAHA.117.309510
  28. lantorno M, Campia U, Di Daniele N, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28.
  29. Zhang W, Yan L, Li Y, et al. Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Mol Cell Biochem. 2015;405. doi: 10.1007/s11010-015-2418-y
  30. Li HT, Wang J, Li SF, et al. Upregulation of microRNA-24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase. Mol Med Rep. 2018;18. doi: 10.3892/mmr.2018.9050
  31. Zheng Y, Li Y, Liu G,et al. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-a3 and regulating inflammatory responses. Exp Ther Med. 2018;15. doi: 10.3892/etm.2017.5355
  32. Chen W, Ou HS. Regulation of miR-24 on vascular endothelial cell function and its role in the development of cardiovascular disease. Sheng Li Xue Bao. 2016;68.
  33. Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270. doi: 10.1016/j.atherosclerosis.2018.01.045
  34. Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endotheliumdependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension. 2012;60. doi: 10.1161/HYPERTENSIONAHA.112.197301
  35. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14. doi: 10.1007/s11154-012-9229-1
  36. Sayed D, Abdellatif M. AKT-ing via microRNA. Cell Cycle. 2010;9. doi: 10.4161/cc.9.16.12634
  37. Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118. doi: 10.1161/CIRCRESAHA.115.308166
  38. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38. doi: 10.1038/ng1725
  39. Sayed D, Abdellatif M. Micrornas in development and disease. Physiol Rev. 2011;91. doi: 10.1152/physrev.00006.2010
  40. Thum T, Catalucci D, Bauersachs J. MicroRNAs: Novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79. doi: 10.1093/cvr/cvn137
  41. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276. doi: 10.1111/joim.12298
  42. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65. doi: 10.1097/FJC.0000000000000178
  43. da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq Bras Cardiol. 2018;111. doi: 10.5935/abc.20180215
  44. Halushka PV, Goodwin AJ, MKH. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;24:211-38. doi: 10.1146/annurev-pathmechdis-012418-012827
  45. £akmak HA, Demir M. Microrna and cardiovascular diseases. Balkan Med J. 2020;37:60-71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94
  46. Liu X, Dong Y, Chen S, et al. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiol. 2015;132. doi: 10.1159/000437090
  47. Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51. doi: 10.1016/j.yjmcc.2011.07.011
  48. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277. doi: 10.1111/joim.12183
  49. Goretti E, Vausort M, Wagner DR, Devaux Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int J Cardiol. 2013;168. doi: 10.1016/j.ijcard.2013.06.092
  50. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659-66. doi: 10.1093/eurheartj/ehq013
  51. Shvangiradze T, Bondarenko I, Troshina E, et al. Profile of microRNAs associated with coronary heart disease in patients with type 2 diabetes. Obe Metab. 2016;13:34. doi: 10.14341/omet2016434-38

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies