Strategies to enhance the treatment of lacunar stroke

Cover Page

Cite item

Full Text

Abstract

Lacunar stroke (LS) is caused mainly by pathological changes in the small intracerebral (perforating) arteries, which are typical for arterial hypertension primarily. The current review highlights actual treatment strategies to LS. The management of patients with LS is carried out in accordance with the general approaches for ischemic stroke treatment and includes acute reperfusion and prevention of recurrent stroke. The choice of antithrombotic therapy in patients with LS is based on assessment of intracerebral hemorrhage and systemic bleeding risks. Dual antiplatelet therapy in patients with LS is not provide a significant benefit beyond aspirin monotherapy, increasing intracerebral hemorrhage risk.

About the authors

Marina Yu. Maksimova

Research Center of Neurology

Email: ncnmaximova@mail.ru
д-р мед. наук, проф. Moscow, Russia

Aleksandra S. Airapetova

Research Center of Neurology

Email: aairapetova.yandex.ru
аспирант, мл. науч. сотр. Moscow, Russia

References

  1. Суслина З.А., Гулевская Т.С., Максимова М.Ю., Моргунов В.А. Нарушения мозгового кровообращения: диагностика, лечение, профилактика. М.: МЕДпресс-информ, 2016
  2. Максимова М.Ю., Гулевская Т.С. Лакунарный инсульт. Журн. неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (8): 27-41
  3. Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993; 24 (1): 35-41. doi: 10.1161/01.str.24.1.35
  4. Pantoni L Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; 9 (7): 689-701. doi: 10.1016/S1474-4422(10)70104-6
  5. Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in understanding the pathophysiology of lacunar stroke. JAMA Neurol. 2018; 75 (10): 1273-81.
  6. Das AS, Regenhardt RW, Vernooij MW, et al. Asymptomatic Cerebral Small Vessel Disease: Insights from Population-Based Studies. J Stroke. 2019; 21 (2): 121-38. doi: 10.5853/jos.2018.03608
  7. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; 12 (8): 822-38. doi: 10.1016/S1474-4422(13)70124-8
  8. Ding J, SigurSsson S, Jonsson PV, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia. JAMA Neurol. 2017; 74 (9): 1105-12. doi: 10.1001/jamaneurol.2017.1397
  9. Pasi M, Boulouis G, Fotiadis P, et al. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology. 2017; 88 (23): 2162-8. doi: 10.1212/WNL.0000000000004007
  10. Brundel M, de Bresser J, van Dillen JJ, et al. Cerebral microinfarcts: a systematic review of neuropat-hological studies. J Cereb Blood Flow Metab. 2012; 32 (3): 425-36. doi: 10.1038/jcbfm.2011.200
  11. Wityk RJ. Cerebral Cortical Microinfarcts on 3-T Magnetic Resonance Imaging: A New Tool in the Study of Cerebrovascular Ischemia. JAMA Neurol. 2017; 74 (4): 385-6. doi: 10.1001/jamaneurol.2016.5555
  12. Гулевская Т.С., Максимова М.Ю., Романова А.В. Предикторы массивных кровоизлияний в головной мозг при артериальной гипертонии. Анналы клинической и экспериментальной неврологии. 2013; 7 (3): 17-25
  13. Boulouis G, van Etten ES, Charidimou A, et al. Association of key magnetic resonance imaging markers of cerebral small vessel disease with hematoma volume and expansion in patients with lobar and deep intracerebral hemorrhage. JAMA Neurol. 2016; 73 (12): 1440-7. doi: 10.1001/jamaneurol.2016.2619
  14. Lou M, Al-Hazzani A, Goddeau RP Jr, et al. Relationship between white-matter hyperintensities and hematoma volume and growth in patients with intracerebral hemorrhage. Stroke. 2010; 41 (1): 34-40. doi: 10.1161/STROKEAHA.109.564955
  15. Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017; 88 (12): 1157-64. doi: 10.1212/WNL0000000000003746
  16. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart As-sociation/American Stroke Association. Stroke. 2018; 49 (3): e46-110. doi: 10.1161/STR.0000000000000158
  17. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995; 333 (24): 1581-7. doi: 10.1056/NEJM199512143332401
  18. IST-3 collaborative group. Effect of thrombolysis with alteplase within 6 h of acute ischaemic stroke on long-term outcomes (the third International Stroke Trial [IST-3]): 18-month follow-up of a randomised controlled trial. Lancet Neurol. 2013; 12 (8): 768-76. doi: 10.1016/S1474-4422(13)70130-3
  19. Toni D, Iweins F, von Kummer R, et al. Identification of lacunar infarcts before thrombolysis in the ECASS I study. Neurology. 2000; 54 (3): 684-8. doi: 10.1212/wnl.54.3.684
  20. Griebe M, Fischer E, Kablau M, et al. Thrombolysis in patients with lacunar stroke is safe: an observational study. J Neurol. 2014; 261 (2): 405-11. doi: 10.1007/s00415-013-7212-8
  21. Huang YC, Tsai YH, Lee JD, et al. Hemodynamic factors may play a critical role in neurological deterioration occurring within 72 hrs after lacunar stroke. PLoS One. 2014; 9 (10): e108395. doi: 10.1371/journal.pone.0108395
  22. Norrving B. Lacunar infarction: embolism is the key: against. Stroke. 2004; 35 (7): 1779-80. doi: 10.1161/01.STR.0000131931.84333.c0
  23. Gorter JW. Major bleeding during anticoagulation after cerebral ischemia: patterns and risk factors. Stroke Prevention In Reversible Ischemia Trial (SPIRIT). European Atrial Fibrillation Trial (EAFT) study groups. Neurology. 1999; 53 (6): 1319-27. doi: 10.1212/wnl.53.6.1319
  24. International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet. 1997; 349 (9065): 1569-81. PMID: 9174558
  25. The Publications Committee for the Trial of ORG 10172 in Acute Stroke Treatment Investigators. Low molecular weight heparinoid, ORG 10172 (Danaparoid), and outcome after acute ischemic stroke: a randomized controlled trial. JAMA. 1998; 279 (16): 1265-72. PMID: 9565006
  26. Mohr JP, Thompson JL, Lazar RM, et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N EnglJ Med. 2001; 345 (20): 1444-51. doi: 10.1056/NEJMoa011258
  27. Evans A, Perez I, Yu G, Kalra L. Should stroke subtype influence anticoagulation decisions to prevent recurrence in stroke patients with atrial fibrillation? Stroke. 2001; 32 (12): 2828-32. doi: 10.1161/hs1201.099520
  28. Charidimou A, Karayiannis C, Song TJ, et al. Brain microbleeds, anticoagulation, and hemorrhage risk: Meta-analysis in stroke patients with AF. Neurology. 2017; 89 (23): 2317-26. doi: 10.1212/WNL.0000000000004704
  29. Cea Soriano L, Gaist D, Soriano-Gabarro M, et al. Low-dose aspirin and risk of intracranial bleeds: An observational study in UK general practice. Neurology. 2017; 89 (22): 2280-7. doi: 10.1212/WNL.0000000000004694
  30. Collaboration AT. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002; 324 (7329): 7186. doi: 10.1136/bmj.324.7329.71
  31. Antithrombotic Trialists' (ATT) Collaboration; Baigent C, Blackwell L, Collins R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009; 373 (9678): 1849-60. doi: 10.1016/S0140-6736(09)60503-1
  32. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet. 1997; 349 (9066): 16419. PMID: 9186381
  33. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996; 348 (9038): 1329-39. doi: 10.1016/s0140-6736(96)09457-3
  34. Wong KS, Wang Y, Leng X, et al. Early dual versus mono antiplatelet therapy for acute non-cardioem-bolic ischemic stroke or transient ischemic attack: an updated systematic review and meta-analysis. Circulation. 2013; 128 (15): 1656-66. doi: 10.1161/CIRCULATIONAHA.113.003187
  35. Wang Y, Pan Y, Zhao X, et al. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) Trial: One-Year Outcomes. Circulation. 2015; 132 (1): 40-6. doi: 10.1161/CIRCULATIONAHA.114.014791
  36. Jing J, Meng X, Zhao X, et al. Dual Antiplatelet Therapy in Transient Ischemic Attack and Minor Stroke With Different Infarction Patterns: Subgroup Analysis of the CHANCE Randomized Clinical Trial. JAMA Neurol. 2018; 75 (6): 711-9. doi: 10.1001/jamaneurol.2018.0247
  37. Johnston SC, Easton JD, Farrant M, et al. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N Engl J Med. 2018; 379 (3): 215-25. doi: 10.1056/NEJMoa1800410
  38. SPS3 Investigators; Benavente OR, Hart RG, MacClure LA, et al. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N EnglJ Med 2012; 367 (9): 817-25. doi: 10.1056/NEJMoa1204133
  39. Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet. 2004; 364 (9431): 331-7. doi: 10.1016/S0140-6736(04)16721-4
  40. Bousser MG, Eschwege E, Haguenau M, et al. "AICLA"controlled trial of aspirin and dipyridamole in the secondary prevention of athero-thrombotic cerebral ischemia. Stroke. 1983; 14 (1): 5-14. doi: 10.1161/01.str.14.1.5
  41. Diener HC, Cunha L, Forbes C, et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci. 1996; 143 (1-2): 1-13. doi: 10.1016/s0022-510x(96)00308-5
  42. ESPRIT Study Group; Halkes PH, van Gijn J, Kappelle LJ, et al. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet. 2006; 367 (9523): 1665-73. doi: 10.1016/S0140-6736(06)68734-5
  43. Sacco RL, Diener H-C, Yusuf S, et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N Engl J Med. 2008; 359 (12): 1238-51. doi: 10.1056/NEJMoa0805002
  44. Kwok CS, Shoamanesh A, Copley HC, et al. Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke: pooled analysis of randomized trials. Stroke. 2015; 46 (4): 1014-23. doi: 10.1161/STROKEAHA.114.008422
  45. Bath PM, Woodhouse LJ, Appleton JP, et al. Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial. Lancet. 2018; 391 (10123): 850-9. doi: 10.1016/S0140-6736(17)32849-0
  46. Gotoh F, Tohgi H, Hirai S, et al. Cilostazol stroke prevention study: A placebo-controlled doubleblind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis. 2000; 9 (4): 147-57. doi: 10.1053/jscd.2000.7216
  47. Shinohara Y, Katayama Y, Uchiyama S, et al. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol. 2010; 9 (10): 959-68. doi: 10.1016/S1474-4422(10)70198-8
  48. Han SW, Lee SS, Kim SH, et al. Effect of cilostazol in acute lacunar infarction based on pulsatility index of transcranial Doppler (ECLIPse): a multicenter, randomized, double-blind, placebo-controlled trial. Eur Neurol. 2013; 69 (1): 33-40. doi: 10.1159/000338247
  49. Amarenco P, Albers GW, Denison H, et al. Efficacy and safety of ticagrelor versus aspirin in acute stroke or transient ischaemic attack of atherosclerotic origin: a subgroup analysis of SOCRATES, a randomised, double-blind, controlled trial. Lancet Neurol. 2017; 16 (4): 301-10. doi: 10.1016/S1474-4422(17)30038-8
  50. Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011; 10 (2): 123-30. doi: 10.1016/S1474-4422(10)70314-8
  51. FOCUS Trial Collaboration Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet. 2019; 393 (10168): 265-74. doi: 10.1016/S0140-6736(18)32823-X
  52. Renoux C, Vahey S, Dell'Aniello S, Boivin JF. Association of Selective Serotonin Reuptake Inhibitors With the Risk for Spontaneous Intracranial Hemorrhage. JAMA Neurol. 2017; 74 (2): 173-80. doi: 10.1001/jamaneurol.2016.4529
  53. Hackam DG, Mrkobrada M. Selective serotonin reuptake inhibitors and brain hemorrhage: a metaanalysis. Neurology. 2012; 79 (18): 1862-5. doi: 10.1212/WNL.0b013e318271f848
  54. Ginsberg MD, Palesch YY, Hill MD, et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS). Part 2: a randomised, double-blind, phase 3, placebo-controlled trial. Lancet Neurol. 2013; 12 (11): 1049-58. doi: 10.1016/S1474-4422(13)70223-0
  55. Arboix A, Blanco-Rojas L, Marti-Vilalta JL. Advancements in understanding the mechanisms of symptomatic lacunar ischemic stroke: translation of knowledge to prevention strategies. Expert Rev Ne-urother. 2014; 14 (3): 261-76. doi: 10.1586/14737175.2014.884926
  56. Group SS, Benavente OR, Coffey CS, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013; 382 (9891): 507-15. doi: 10.1016/S0140-6736(13)60852-1
  57. Megherbi SE, Milan C, Minier D, et al. Association between diabetes and stroke subtype on survival and functional outcome 3 months after stroke: data from the European BIOMED Stroke Project. Stroke. 2003; 34 (3): 688-94. doi: 10.1161/01.STR.0000057975.15221.40
  58. Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care. 2007; 30 (12): 3131-40. doi: 10.2337/dc06-1537
  59. Palacio S, McClure LA, Benavente OR, et al. Lacunar strokes in patients with diabetes mellitus: risk factors, infarct location, and prognosis: the secondary prevention of small subcortical strokes study. Stroke. 2014; 45 (9): 2689-94. doi: 10.1161/STROKEAHA.114.005018
  60. Ichikawa H, Kuriki A, Kinno R, et al. Occurrence and clinicotopographical correlates of brainstem infarction in patients with diabetes mellitus. J Stroke Cerebrovasc Dis. 2012; 21 (8): 890-7. doi: 10.1016/j.jstrokecerebrovasdis.2011.05.017
  61. Kernan WN, Viscoli CM, Dearborn JL, et al. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction. JAMA Neurol. 2017; 74 (11): 1319-27. doi: 10.1001/jamaneurol.2017.2136
  62. Amarenco P. Effect of statins in stroke prevention. Curr Opin Lipidol. 2005; 16 (6): 614-8. doi: 10.1097/01.mol.0000194127.99968.ca
  63. Collins R, Armitage J, Parish S, et al. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004; 363 (9411): 757-67. doi: 10.1016/S0140-6736(04)15690-0

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies