Transcatheter sympathetic renal denervation for resistant arterial hypertension: the current state

Cover Page

Cite item

Full Text

Abstract

Arterial hypertension is a main independent predictor of cardiovascular morbidity and mortality. Despite recent achievements of antihypertensive therapy, the incidence rate of suboptimal blood pressure control remains high. According to large trials, the prevalence of resistant hypertension is 6-12% among hypertensive patients. Renal sympathetic denervation (RSD) is being considered as a new frontier in the overcoming of drug resistance. The current article reviews recent view of pathophysiology of resistant hypertension and the role of sympathetic nervous system and modern technological developments of RSD. The results of major clinical trials are being discussed in order to reexamine the feasibility and efficacy of RSD to treat hypertension. An extensive post hoc analysis of Symplicity HTN-3 and intermediate results of new ongoing trials predict that RDN will emerge as an effective therapy for the treatment of hypertension and other clinical conditions associated with chronically elevated sympathetic activity

About the authors

P. A Bolotov

Institute of Professional Development of FMBA of Russia; V.V.Veresaev Сity Clinical Hospital of the Department of Health of Moscow

Email: dr.bolotov@mail.ru
д-р мед. наук, проф. каф. рентгенэндоваскулярных и миниинвазивных методов диагностики и лечения; врач - специалист рентгенэндоваскулярных методов диагностики и лечения 125371, Russian Federation, Moscow, Volokolamskoe sh., d. 91; 127644, Russian Federation, Moscow, ul. Lobnenskaia, d. 10

S. P Semitko

Institute of Professional Development of FMBA of Russia; V.V.Veresaev Сity Clinical Hospital of the Department of Health of Moscow

д-р мед. наук, проф., зав. каф. рентгенэндоваскулярных и миниинвазивных методов диагностики и лечения; зав. отд-нием рентгенохирургических методов диагностики и лечения 125371, Russian Federation, Moscow, Volokolamskoe sh., d. 91; 127644, Russian Federation, Moscow, ul. Lobnenskaia, d. 10

V. P Klimov

Institute of Professional Development of FMBA of Russia; V.V.Veresaev Сity Clinical Hospital of the Department of Health of Moscow

канд. мед. наук, доц. каф. рентгенэндоваскулярных и миниинвазивных методов диагностики и лечения; врач - специалист рентгенэндоваскулярных методов диагностики и лечения 125371, Russian Federation, Moscow, Volokolamskoe sh., d. 91; 127644, Russian Federation, Moscow, ul. Lobnenskaia, d. 10

N. V Vertkina

Institute of Professional Development of FMBA of Russia

д-р мед. наук, глав. врач 125371, Russian Federation, Moscow, Volokolamskoe sh., d. 91

References

  1. Шальнова С.А., Конради А.О., Карпов Ю.А. и др. Анализ смертности от сердечно-сосудистых заболеваний в 12 регионах Российской Федерации, участвующих в исследовании «Эпидемиология сердечно-сосудистых заболеваний в различных регионах России». Рос. кардиол. журн. 2012; 5: 6-11
  2. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization, 2009; p. 1-62.
  3. Kearney P.M et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217-23.
  4. Freis E. Hypertension: Pathophysiology, Diagnosis and Management. 2nd ed. New York: Raven Press, 1995.
  5. Pimenta E, Calhoun D.A. Resistant hypertension: incidence, prevalence, and prognosis. Circulation 2012; 125: 1594-6.
  6. Daugherty S.L et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 2012; 125 (13): 1635-42. doi: 10.1161/CIRCULATIONAHA.111.068064
  7. Calhoun D.A, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403-19.
  8. Calhoun D.A, Booth J.N 3rd, Oparil S et al. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, population-based cohort. Hypertension 2014; 63: 451-8.
  9. Ohman E.M, Bhatt D.L, Steg P.G et al. The REduction of Atherothrombosis for Continued Health (REACH) Registry: an international, prospective, observational investigation in subjects at risk for atherothrombotic events-study design. Am Heart J 2006; 151 (4): 786.e1-10.
  10. Achelrod D, Wenzel U, Frey S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am J Hypertens 2015; 28: 355-61.
  11. Esler M, Jennings G, Korner B et al. Measurement of total and organ-specific nor-epinephrine kinetics in humans. Am J Physiol 1984; 247: 21-8.
  12. Kottke F.J, Kubicek W.G, Visscher M.B. The production of arterial hypertension by chronic renal artery - nerve stimulation. Am J Phisiol 1945; 145: 38-47.
  13. Grimson K.S, Orgain E.S, Anderson B et al. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg 1949; 129: 850-71.
  14. Smithwick R, Thompson J. Splanchnicectomy for essential hypertension: results in 1,266 cases. J Am Med Assoc 1953; 152: 1501-4.
  15. DiBona G.F. The sympathetic nervous system and hypertension: recent developments. Hypertension 2004; 43: 147-50.
  16. Ланг Г.Ф. Гипертоническая болезнь. М.: Медгиз, 1950; с. 496.
  17. Julius S, Krause L, Schork N.J et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertension 1989; 14: 177-83.
  18. Müller J, Barajas L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res 1972; 41 (5): 533-49.
  19. Barajas L, Müller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res 1973; 43 (1): 107-32.
  20. Esler M, Jennings G, Korner P et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988; 11: 3-20.
  21. Lambert E, Straznicky N, Schlaich M et al. Differing patterns of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007; 50: 862-8.
  22. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724-8.
  23. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33: 1058-66.
  24. DiBona G. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol 2000; 279: R1517-R1524.
  25. DiBona G, Kopp U. Neural control of renal function. Physiol Rev 1997; 77: 75-197.
  26. Osborn J.W, Foss J.D. Renal nerves and long-term control of arterial pressure. Compr Physiol 2017; 7: 263-320. doi: 10.1002/cphy.c150047
  27. Campese V.M, Ku E, Park J. Sympathetic renal innervations and resistant hypertension. Int J Hypertens 2011; 2011: 814354.
  28. Witkowski A, Prejbisz A, Florczak E et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 2011; 58: 559-65.
  29. Zaldivia M.T, Rivera J, Hering D et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 2017; 69: 323-31. doi: 10.1161/HYPERTENSIONAHA.116.08373
  30. Bhatt D, Bakris G. The promise of renal denervation. Cleveland Clin J Med 2012; 79: 498-500.
  31. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010; 105: 570-6.
  32. Egan B. Renal sympathetic denervation: a novel intervention for resistant hypertension, insulin resistance, and sleep apnea. Hypertension 2011; 58: 542-3.
  33. Esler M.D, Krum H, Sobotka P.A et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 Trial): a randomized controlled trial. Lancet 2010; 376: 1903-9.
  34. Rehman J, Landman J, Lee D et al. Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 2004; 18 (1): 83-104.
  35. Koopmann M, Shea J, Kholmovski E et al. Renal sympathetic denervation using MR-guided high-intensity focused ultrasound in a porcine model. J Ther Ultrasound 2016; 4: 3. Published online 2016 Feb 3. doi: 10.1186/s40349-016-0048-9
  36. Rossi N.F, Pajewski R, Chen H et al. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2016; 310: R197-R208. doi: 10.1152/ajpregu.00331.2015
  37. Harris W. Alcohol injection of the Gasserian ganglion for trigeminal neuralgia. Lancet 1912; 179: 218-21.
  38. Iaccarino V, Russo D, Niola R et al. Total or partial percutaneous renal ablation in the treatment of renovascular hypertension: radiological and clinical aspects. Br J Radiol 1989; 62: 593-8.
  39. Jankovic J, Orman J. Botulinum A toxin for cranial-cervical dystonia: a double-blind, placebo-controlled study. Neurology 1987; 37: 616-23.
  40. Manning P.T, Powers C.W, Schmidt R.E et al. Guanethidine induced destruction of peripheral sympathetic neurons occurs by an immune-mediated mechanism. J Neurosci 1983; 3: 714-24.
  41. Stefanadis C, Synetos A, Toutouzas K et al. New double balloon delivery catheter for chemical denervation of the renal artery with vincristine. Int J Cardiol 2013; 168: 4346-8.
  42. Stefanadis C, Toutouzas K, Vlachopoulos C et al. Chemical denervation of the renal artery with vincristine for the treatment of resistant arterial hypertension: first-in-man application. Hellenic J Cardiol 2013; 54: 318-21.
  43. Fischell T.A, Ebner A, Gallo S et al. Transcatheter Alcohol-Mediated Perivascular Renal Denervation With the Peregrine System: First-in-Human.
  44. Norvell J.E. The aorticorenal ganglion and its role in renal innervation. J Comp Neurol 1968; 133: 101-12.
  45. Lusch A, Leary R, Heidari E et al. Intrarenal and extrarenal autonomic nervous system redefined. J Urol 2014; 191: 1060-5.
  46. Atherton D.S, Deep N.L, Mendelshon F.O. Micro-anatomy of the renal sympathetic nervous system: A human postmortem histologic study. Clin Anat 2011; 25: 628-33.
  47. Sakakura K, Ladich E, Cheng Q et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64: 635-43.
  48. Mompeo B, Maranillo E, Garcia-Touchard et al. The Gross Anatomy of the Renal Sympathetic Nerves Revisited. Clin Anat 2016; 29: 660-4.
  49. Okada T, Pellerin O, Savard S et al. Eligibility for renal denervation: Anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol 2015; 38: 79-87.
  50. Ozkan U, Oguzkurt L, Tercan F et al. Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diag Interv Radiol 2006; 12: 183-6.
  51. Esler M. The sympathetic system and hypertension. Am J Hypertens 2000; 13: 99-105S.
  52. Steigerwald K, Titova A, Malle C et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 2012; 30: 2230-9.
  53. Krum H, Schlaich M, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373 (9671): 1275-81.
  54. Esler M.D, Krum H, Sobotka P.A et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376: 1903-9.
  55. Mahfoud F, Cremers B, Janker J et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 2012; 60: 419-24. doi: 10.1161/HYPERTENSIONAHA.112.193870
  56. Ewen S, Cremers B, Meyer M.R et al. Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens 2015; 33: 2519-25. doi: 10.1097/HJH. 0000000000000752
  57. Brinkmann J, Heusser K, Schmidt B.M et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult to-control hypertensive patients: prospective case series. Hypertension 2012; 60 (6).
  58. Pedrosa R.P, Drager L.F, Gonzaga C.C et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811-7.
  59. Grassi G, Seravalle G, Brambilla G et al. Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 2015; 65: 1209-16. doi: 10.1161/HYPERTENSIONAHA.114.04823
  60. Fink G.D, Phelps J.T. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112-8. doi: 10.1016/j.autneu.2016.07.011
  61. Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens 2014; 8: 593-8. DOI: 0.1016 /j.jash.2014. 06.001
  62. Kandzari D.E, Bhatt D.L, Brar S et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219-27.
  63. Nakagawa H, Yamanashi W.S, Pitha J.V et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 1995; 91: 2264-73.
  64. Ammar S, Ladich E, Steigerwald K et al. Pathophisiology of renal denervation procedures: from renal nerve anatomy to procedural parameters. Eurointervention 2013; 9: R89-R95.
  65. Foss J.D, Wainford R.D, Engeland W.C et al. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol 2015; 308: R112-R122.
  66. Kandzari D.E, Kario K, Mahfoud F et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 2016; 171: 82-91. doi: 10.1016/j.ahj.2015.08.021
  67. Mahfoud F, Bakris G, Bhatt D.L et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J 2017; 38 (2): 93-100. doi: 10.1093/eurheartj/ehw325
  68. Townsend R.R, Mahfoud F, Kandzari D.E et al; SPYRAL HTN-OFF MED Trial Investigators. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160-70. doi: 10.1016/S0140-6736(17)32281-X
  69. Pekarskiy S.E, Baev A.E, Mordovin V.F et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 2017; 35: 369-75.
  70. Fengler K, Ewen S, Hollriegel R et al. Blood pressure response to main artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc 2017; 6: e006196. doi: 10.1161/JAHA. 117.006196
  71. Azizi M, Sapoval M, Gosse P et al; Renal Denervation for Hypertension (DENERHTN) Investigators. Optimum and stepped care standardized antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomized controlled trial. Lancet 2015; 385: 1957-65. doi: 10.1016/S0140-6736(14)61942-5
  72. Fink G.D, Phelps J.T. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112-8. doi: 10.1016/j.autneu.2016.07.011
  73. Dörr O, Liebetrau C, Möllmann H et al. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 2014; 63: 984-90. DOI: 10.1161/ HYPERTENSIONAHA.113.02266
  74. De Jong M.R, Adiyaman A, Gal P et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 2016; 68: 707-14. doi: 10.1161/HYPERTENSIONAHA.116.07492

Copyright (c) 2018 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies