Practical approaches to improving the efficiency of suppression of resistant gram-negative flora


Cite item

Full Text

Abstract

The spread of resistant gram-negative microflora leads to a limited selection of antimicrobial drugs, an increase in the duration of treatment and increased mortality. In the absence of new antibacterial agents active against polyresistant strains, it is important to obtain maximum benefit from existing antibacterial agents that can be achieved by optimizing their pharmacological parameters. In addition, the need to expand the experimental and clinical studies to facilitate the study of the conditions of the development of resistance of microbes in the course of treatment with antibiotics, detailing the impact of other factors allows to overcome this process and optimize antibiotic therapy.

About the authors

V. B Beloborodov

ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России, Москва

Email: vb_beloborodov@mail.ru
д-р мед. наук, проф. каф. инфекционных болезней

References

  1. Ho J, Tambyah P.A, Paterson D.L. Multiresistant Gramnegative infections: a global perspective. Curr Opin Infect Dis 2010; 23: 546-53.
  2. Qureshi Z.A, Paterson D.L, Peleg A.Y et al. Clinical characteristics of bacteraemia caused by extendedspectrum blactamaseproducing Enterobacteriaceae in the era of CTXMtype and KPCtype b - lactamases. Clin Microbiol Infect 2012; 18: 887-93.
  3. Gudiol C, Calatayud L, Garcia-Vidal C et al. Bacteraemia due to extendedspectrumbetalactamaseproducing Escherichia coli (ESBL- EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 2010; 65: 333-41.
  4. Tam V.H, Rogers C.A, Chang K.T et al. Impact of multidrugresistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 2010; 54: 3717-22.
  5. Mauldin P.D, Salgado C.D, Hansen I.S et al. Attributable hospital cost and length of stay associated with health careassociated infections caused by antibioticresistantgramnegative bacteria. Antimicrob Agents Chemother 2010; 54: 109-15.
  6. Tamma P.D, Cosgrove S.E. Antimicrobial stewardship. Infect Dis Clin North Am 2011; 25: 245-60.
  7. Nowak M.A, Nelson R.E, Breidenbach J.L et al. Clinical and economic outcomes of a prospective antimicrobial stewardship program. Am J Health Syst Pharm 2012; 69: 1500-8.
  8. Абакумов М.М., Багдасарова Е.А., Багненко С.Ф. и др. Стратегия и тактика применения антимикробных средств в лечебных учреждениях России. Российские национальные рекомендации. Под ред. В.С.Савельева, Б.Р.Гельфанда, С.В.Яковлева. М.: Компания Боргес, 2012.
  9. Slain D, Sarwari A.R, Petros K.O et al. Impact of a Multimodal Antimicrobial Stewardship Program on Pseudomonas aeruginosa Susceptibility and Antimicrobial Use in the ICU Setting. Crit Care Res Pract 2011: 416426.
  10. Craig W.A. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1-10.
  11. Drusano G.L. Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 2007; 45: S89-95.
  12. Moore R.D, Lietman P.S, Smith C.R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155: 93-9.
  13. Forrest A, Nix D.E, Ballow C.H et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073-81.
  14. Fenton C, Keating G.M, Curran M.P. Daptomycin. Drugs 2004; 64: 445-55.
  15. Craig W.A. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad - spectrum cephalosporins. Diagn Microbiol Infect Dis 1995; 22: 89-96.
  16. Hatano K, Wakai Y, Watanabe Y, Mine Y. Simulation of human plasma levels of betalactams in mice by multiple dosing and the relationship between the therapeutic efficacy and pharmacodynamic parameters. Chemotherapy1994; 40: 1-7.
  17. Negri M.C, Morosini M.I, Loza E, Baquero F. In vitro selective antibiotic concentrations of betalactams for penicillinresistant Streptococcus pneumoniae populations. Antimicrob Agents Chemother 1994; 38: 122-5.
  18. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 2003; 52: 11-7.
  19. Hawkey P.M, Jones A.M. The changing epidemiology of resistance. J Antimicrob Chemother 2009; 64 (Suppl. 1): i3-10.
  20. Welte T, Pletz M.W. Antimicrobial treatment of nosocomial meticillinresistant Staphylococcus aureus (MRSA) pneumonia: current and future options. Int J Antimicrob Agents 2010; 36: 391-400.
  21. Saravolatz L.D, Stein G.E, Johnson L.B. Ceftaroline: a novel cephalosporin with activity against methicillinresistant Staphylococcus aureus. Clin Infect Dis 2011; 52: 1156-63.
  22. Eagle H. The multiple mechanisms of penicillin resistance. J Bacteriol 1954; 68: 610-6.
  23. Arias C.A, Murray B.E. Antibioticresistant bugs in the 21st century - A clinical superchallenge. N Engl J Med 2009; 360: 439-43.
  24. Rossi F, Baquero F, Hsueh P.R et al. In vitro susceptibilities of aerobic and facultatively anaerobic Gramnegative bacilli isolated from patients with intra abdominal infections worldwide: 2004 results from SMART Study. J Antimicrob Chemother 2006; 58: 205-10.
  25. Dowzicky M.J, Park C.H. Update on antimicrobial susceptibility rates among gramnegative and grampositive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther 2008; 30: 2040-50.
  26. Mouton J.W, den Hollander J.G. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1994; 38: 931-6.
  27. Mouton J.W, Punt N, Vinks A.A. Concentrationeffect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo. Antimicrob Agents Chemother 2007; 51: 3449-51.
  28. Lodise T.P.Jr, Lomaestro B, Drusano G.L. Piperacillintazobactam for Pseudomonas aeruginosa infection: clinical implications of an extendedinfusion dosing strategy. Clin Infect Dis 2007; 44: 357-63.
  29. Scaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents 2008; 32: 294-301.
  30. Adembri C, Novelli A. Pharmacokinetic and pharmacodynamic parameters of antimicrobials: potential for providing dosing regimens that are less vulnerable to resistance. Clin Pharmacokinet 2009; 48: 517-28.
  31. Mc Kinnon P.S, Paladino J.A, Schentag J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31: 345-51.
  32. Sinnollareddy M.G, Roberts M.S, Lipman J, Roberts J.A. b - Lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol 2012; 39: 489-96.
  33. Abdul Aziz M.H, Dulhunty J.M, Bellomo R et al. Continuous beta - lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2012; 2: 37.
  34. Bhat S.V, Peleg A.Y, Lodise T.P et al. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram - negative organisms. Antimicrob Agents Chemother 2007; 51: 4390-5.
  35. Tam V.H, Gamez E.A, Weston J.S et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillintazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008; 46: 862-7.
  36. Alou L, Aguilar L, Sevillano D et al. Is there a pharmacodynamic need for the use of continuous versus intermittent infusion with ceftazidime against Pseudomonas aeruginosa? An in vitro pharmacodynamic model. J Antimicrob Chemother 2005; 55: 209-13.
  37. Gerber A.U, Craig W.A, Brugger H.P et al. Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J Infect Dis 1983; 147: 910-7.
  38. Lau W.K, Mercer D, Itani K.M et al. Randomized, openlabel, comparative study of piperacillintazobactam administered by continuous infusion versus intermittent infusion for treatment of hospitalized patients with complicated intraabdominal infection. Antimicrob Agents Chemother 2006; 50: 3556-61.
  39. Roberts J.A, Webb S, Paterson D et al. A systematic review on clinical benefits of continuous administration of betalactam antibiotics. Crit Care Med 2009; 37: 2071-8.
  40. Kasiakou S.K, Sermaides G.J, Michalopoulos A et al. Continuous versus intermittent intravenous administration of antibiotics: a metaanalysis of randomised controlled trials. Lancet Infect Dis 2005; 5: 581-9.
  41. Tamma P.D, Putcha N, Suh Y.D et al. Does prolonged blactam infusions improve clinical outcomes compared to intermittent infusions? A metaanalysis and systematic review of randomized, controlled trials. BMC Infect Dis 2011; 11: 181.
  42. Yost R.J, Cappelletty D.M. RECEIPT Study group. The Retrospective Cohort of Extended Infusion PiperacillinTazobactam (RECEIPT) study: amulticenter study. Pharmacotherapy 2011; 31: 767-75.
  43. Patel G.W, Patel N, Lat A et al. Outcomes of extended infusion piperacillin/tazobactam for documented Gramnegative infections. Diagn Microbiol Infect Dis 2009; 64: 236-40.
  44. Xamplas R.C, Itokazu G.S, Glowacki R.C et al. Implementation of an extendedinfusion piperacillintazobactam program at an urban teaching hospital. Am J Health Syst Pharm 2010; 67: 622-8.
  45. Nichols K.R, Knoderer C.A, Cox E.G, Kays M.B. Systemwide implementation of the use of an extendedinfusion piperacillin/tazobactam dosing strategy: feasibility of utilization from a children’s hospital perspective. Clin Ther 2012; 34: 1459-65.
  46. Nordmann P, Picazo J.J, Mutters R et al. Comparative activity of carbapenem testing: the COMPACT study. J Antimicrob Chemother 2011; 66: 1070-8.
  47. Bratu S, Landman D, Haag R et al. Rapid spread of carbapenem - resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005; 165: 1430-5.
  48. Mena A, Plasencia V, Garcia L et al. Characterization of a large outbreak by CTXM1producing Klebsiella pneumoniae and mechanisms leading to in vivo carbapenem resistance development. J Clin Microbiol 2006; 44: 2831-7.
  49. Hidron A.I, Edwards J.R, Patel J et al. Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29: 996-1011.
  50. Rhomberg P.R, Jones R.N. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 2009; 65: 414-26.
  51. Craig W.A. The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis 1997; 24: S266-75.
  52. Ong C.T, Tessier P.R, Li C et al. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 2007; 57: 153-61.
  53. Roberts J.A, Kirkpatrick C.M, Roberts M.S et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64: 142-50.
  54. Lorente L, Lorenzo L, Martin M.M et al. Meropenem by continuous versus intermittent infusion in ventilatorassociated pneumonia due to gramnegative bacilli. Ann Pharmacother 2006; 40: 219-23.
  55. Krueger W.A, Bulitta J, Kinzig-Schippers M et al. Evaluation by montecarlo simulation of the pharmacokinetics of two doses of meropenem administered intermittently or as a continuous infusion in healthy volunteers. Antimicrob Agents Chemother 2005; 49: 1881-9.
  56. Mattoes H.M, Kuti J.L, Drusano G.L, Nicolau D.P. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther 2004; 26: 1187-98.
  57. Kotapati S, Nicolau D.P, Nightingale C.H, Kuti J.L. Clinical and economic benefits of a meropenem dosage strategy based on pharmacodynamic concepts. Am J Health Syst Pharm 2004; 61: 1264-70.
  58. Kuti J.L, Florea N.R, Nightingale C.H, Nicolau D.P. Pharmacodynamics of meropenem and imipenem against Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Pharmacotherapy 2004; 24: 8-15.
  59. Ariano R.E, Nyhlacen A, Donnelly J.P et al. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 2005; 39: 32-8.
  60. Arnold H.M, Mc Kinnon P.S, Augustin K.M et al. Assessment of an alternative meropenem dosing strategy compared with imipenem - cilastatin or traditional meropenem dosing after cefepime failure or intolerance in adults with neutropenic fever. Pharmacotherapy 2009; 29: 914-23.
  61. Patel G.W, Duquaine S.M, Mc Kinnon P.S. Clinical outcomes and cost minimization with an alternative dosing regimen for meropenem in a community hospital. Pharmacotherapy 2007; 27: 1637-43.
  62. Li C, Kuti J.L, Nightingale C.H, Nicolau D.P. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol 2006; 46: 1171-8.
  63. Lomaestro B.M, Drusano G.L. Pharmacodynamic evaluation of extending the administration time of meropenem using a Monte Carlo simulation. Antimicrob Agents Chemother 2005; 49: 461-3.
  64. Jaruratanasirikul S, Sriwiriyajan S, Punyo J. Comparison of the pharmacodynamics of meropenem in patients with ventilatorassociated pneumonia following administration by 3hour infusion or bolus injection. Antimicrob Agents Chemother 2005; 49: 1337-9.
  65. Keam S.J. Doripenem: a review of its use in the treatment of bacterial infections. Drugs 2008; 68: 2021-57.
  66. Mandell L. Doripenem: a new carbapenem in the treatment of nosocomial infection. Clin Infect Dis 2009; 49: S1-3.
  67. Queenan A.M, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of betalactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother 2010; 54: 565-9.
  68. Psathas P.A, Kuzmission A, Ikeda K, Yasuo S. Stability of doripenem in vitro in representative infusion solutions and infusion bags. Clin Ther 2008; 30: 2075-87.
  69. Bhavnani S.M, Hammel J.P, Cirincione B.B et al. Use of pharmacokineticpharmacodynamic target attainment analyses to support phase 2 and 3 dosing strategies for doripenem. Antimicrob Agents Chemother 2005; 49: 3944-7.
  70. Ikawa K, Morikawa N, Ikeda K et al. Pharmacodynamic assessment of doripenem in peritoneal fluid against Gramnegative organisms: use of population pharmacokinetic modeling and Monte Carlo simulation. Diagn Microbiol Infect Dis 2008; 62: 292-7.
  71. Samtani M.N, Flamm R, Kaniga K, Nandy P. Pharmacokinetic - pharmacodynamicmodelguided doripenem dosing in critically ill patients. Antimicrob Agents Chemother 2010; 54: 2360-4.
  72. Van Wart S.A, Andes D.R, Ambrose P.G, Bhavnani S.M. Pharmacokinetic - pharmacodynamic modeling to support doripenem dose regimen optimization for critically ill patients. Diagn Microbiol Infect Dis 2009; 63: 409-14.
  73. Chastre J, Wunderink R, Prokocimer P et al. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator - associated pneumonia: a multicenter, randomized study. Crit Care Med 2008; 36: 1089-96.
  74. Eagle H, Fleischman R, Musselman A.D. Effect of schedule of administration on the therapeutic efficacy of penicillin; importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med 1950; 9: 280-99.
  75. Mouton J.W, Ambrose P.G, Canton R et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat 2011; 14: 107-17.
  76. Firsov A.A, Gilbert D, Greer K et al. Comparative pharmacodynamics and antimutant potentials of doripenem and imipenem with ciprofloxacinresistant Pseudomonas aeruginosa in an in vitro model. Antimicrob Agents Chemother 2012; 56: 1223-8.
  77. Tam V.H, Schilling A.N, Neshat S et al. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 4920-7.
  78. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 2005; 44: 1009-34.
  79. Roberts D.M, Roberts J.A, Roberts M.S et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 2012; 40: 1523-8.
  80. Patel N, Cardone K, Grabe D.W et al. Use of pharmacokinetic and pharmacodynamic principles to determine optimal administration of daptomycin in patients receiving standardized thriceweekly hemodialysis. Antimicrob Agents Chemother 2011; 55: 1677-83.
  81. Koomanachai P, Bulik C.C, Kuti J.L, Nicolau D.P. Pharmacodynamic modeling of intravenous antibiotics against gramnegative bacteria collected in the United States. Clin Ther 2010; 32: 766-79.
  82. Conte J.E, Golden J.A, Kelley M.G, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of meropenem. Int J Antimicrob Agents 2005; 26: 449-56.
  83. Chandorkar G, Huntington J.A, Gotfried M.H et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother 2005; 67: 2463-9.
  84. Zeitlinger M.A, Derendorf H, Mouton J.W et al. Protein binding: do we ever learn? Antimicrob Agents Chemother 2011; 55: 3067-74.
  85. Martinez M.N, Papich M.G, Drusano G.L. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 2012; 56: 2795-805.

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies