Association of the gut microbiome and metabolome with the dynamics of laboratory parameters in individuals with type 2 diabetes and obesity after bariatric surgery

Cover Page

Cite item

Full Text

Abstract

Background. It is known that the gut microbial community has a significant impact on the health of the host organism. It has been shown that changes in the composition and metabolic potential of the microbiota occur in people with obesity and diabetes type 2 (T2D). However, the impact of the microbiota on metabolic changes after bariatric surgery remains unclear.

Aim. To assess the influence of the gut microbiome composition on metabolic parameters in patients with obesity and T2D after bariatric surgery.

Materials and methods. The study included patients with T2D and obesity, who were treated with bariatric surgery (gastric bypass). Before surgery, as well as 6 and 12 months after surgery, the anthropometric, laboratory parameters were measured, feces were collected for analysis of the intestinal microbiota. The microbiota composition was determined through sequencing of the 16S rRNA gene from stool samples. For a subset of patients, the stool metabolome was also studied.

Results. After surgery, there was a significant positive trend in weight loss, glycemia, lipid spectrum parameters, and insulin resistance. However, patients did not achieve target levels of 25(OH) vitamin D and calcium. Taxa were identified whose abundance before surgery was associated with the dynamics of parathyroid hormone and vitamin D. The order Verrucomicrobiales was negatively associated with vitamin D dynamics, while the order Fusobacteriales, which includes hydrogen sulfide producers in the gut, was positively associated with the increase in parathyroid hormone. Interestingly, these bacteria were also elevated in patients with higher total cholesterol levels prior to intervention, whereas other H2S producers in the gut correlated with C-peptide levels. No significant associations between the metabolome and clinical parameters' were found; however, the correlation structure of microbiome and metabolome data in patients with obesity was examined.

Conclusion. The study revealed an association between several intestinal microbiota species and metabolic parameters after bariatric interventions. These results are pilot and, if reproduced, may allow the prediction of the bariatric surgery effects on weight and glycemia based on the composition of the gut microbiota.

About the authors

Ekaterina A. Shestakova

Endocrinology Research Centre, Moscow

Author for correspondence.
Email: katiashestakova@mail.ru
ORCID iD: 0000-0001-6612-6851

D. Sci. (Med.)

Russian Federation, Moscow

Natalia S. Klimenko

Nobias Technologies LLC

Email: katiashestakova@mail.ru
ORCID iD: 0000-0001-9640-0102

Cand. Sci. (Biol.)

Russian Federation, Moscow

Elena V. Pokrovskaya

Endocrinology Research Centre, Moscow

Email: katiashestakova@mail.ru
ORCID iD: 0000-0001-5268-430X

Res. Officer

Russian Federation, Moscow

Maria S. Sineokaya

Endocrinology Research Centre, Moscow

Email: katiashestakova@mail.ru
ORCID iD: 0009-0009-7343-687X

Cand. Sci. (Med.)

Russian Federation, Moscow

Stanislav I. Koshechkin

Nobias Technologies LLC

Email: katiashestakova@mail.ru
ORCID iD: 0000-0002-7389-0476

Cand. Sci. (Biol.)

Russian Federation, Moscow

Vera E. Odintsova

Nobias Technologies LLC

Email: katiashestakova@mail.ru
ORCID iD: 0000-0003-1897-4033

chief bioinformatician

Russian Federation, Moscow

Marina V. Shestakova

Endocrinology Research Centre, Moscow

Email: katiashestakova@mail.ru
ORCID iD: 0000-0002-5057-127X

D. Sci. (Med.), Prof., Acad. RAS

Russian Federation, Moscow

References

  1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под ред. И.И. Дедова, М.В. Шестаковой, О.Ю. Сухаревой. 12-й вып. М., 2025 [Algoritmy spetsializirovannoi meditsinskoi pomoshchi bolnym sakharnym diabetom. Pod red. II Dedova, MV Shestakovoi, OYu Sukharevoi. 12-y vyp. Moscow, 2025 (in Russian)].
  2. Cui BB, Wang GH, Li PZ, et al. Long-term outcomes of Roux-en-Y gastric bypass versus medical therapy for patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Surg Obes Relat Dis. 2021;17(7):1334-43. doi: 10.1016/j.soard.2021.03.001
  3. Liu C, Xu Q, Dong S, et al. New mechanistic insights of anti-obesity by sleeve gastrectomy-altered gut microbiota and lipid metabolism. Front Endocrinol (Lausanne). 2024;15:1338147. doi: 10.3389/fendo.2024.1338147
  4. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6. doi: 10.1038/nature12506
  5. Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020;92(10):97-104 [Demidova TYu, Lobanova KG, Oinotkinova OS. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(10):97-104 (in Russian)]. doi: 10.26442/00403660.2020.10.000778. EDN KEIMGW
  6. Gibiino G, Binda C, Cristofaro L, et al. Dysbiosis and Gastrointestinal Surgery: Current Insights and Future Research. Biomedicines. 2022;10(10):2532. doi: 10.3390/biomedicines10102532
  7. Hugerth LW, Wefer HA, Lundin S, et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol. 2014;80(16):5116-23. doi: 10.1128/AEM.01403-14
  8. Merkel AYu, Tarnovetskii IYu, Podosokorskaya OA, Toshchakov AV. Analysis of 16S rRNA Primer Systems for Profiling of Thermophilic Microbial Communities. Microbiology. 2019;88:671-80. doi: 10.1134/s0026261719060110
  9. Fadrosh DW, Ma B, Gajer P, Sengamalay N, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6. doi: 10.1186/2049-2618-2-6
  10. Efimova D, Tyakht A, Popenko A, et al. Knomics-Biota – a system for exploratory analysis of human gut microbiota data. BioData Min. 2018;11:25. doi: 10.1186/s13040-018-0187-3
  11. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. doi: 10.1038/nmeth.3869
  12. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-7. doi: 10.1038/s41587-019-0209-9
  13. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6(1):90. doi: 10.1186/s40168-018-0470-z
  14. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590-6. doi: 10.1093/nar/gks1219
  15. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017;8:2224. doi: 10.3389/fmicb.2017.02224
  16. Odintsova VE, Klimenko NS, Tyakht AV. Approximation of a Microbiome Composition Shift by a Change in a Single Balance Between Two Groups of Taxa. mSystems. 2022;7(3):e0015522. doi: 10.1128/msystems.00155-22
  17. Rivera-Pinto J, Egozcue JJ, Pawlowsky-Glahn V, et al. Balances: a New Perspective for Microbiome Analysis. mSystems. 2018;3(4):e00053-18. doi: 10.1128/mSystems.00053-18
  18. Kurtz ZD, Müller CL, Miraldi ER, et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226
  19. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast Unfolding of Communities in Large Networks. J Stat Mechan Theory Experiment. 2008;10:P10008. doi: 10.1088/1742-5468/2008/10/P10008
  20. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559
  21. Дедов И.И., Мокрышева Н.Г., Мельниченко Г.А., и др. Клинические рекомендации «Ожирение» Минздрава России. Версия 2024 года. Вестник репродуктивного здоровья. 2025;4(2):14-30 [Dedov II, Mokrysheva NG, Melnichenko GA, et al. Klinicheskie rekomendatsii “Ozhirenie” Minzdrava Rossii. Versia 2024 goda. Vestnik reproduktivnogo zdorovia. 2025;4(2):14-30 (in Russian)]. doi: 10.14341/brh12763
  22. Мазурина Н.В., Огнева Н.А., Трошина Е.А., и др. Нарушения метаболизма кальция в отдаленном периоде после бариатрических операций. Экспериментальная и клиническая гастроэнтерология. 2013;12:27-32 [Mazurina NV, Ogneva NA, Troshina EA, et al. Narusheniia metabolizma kaltsiia v otdalennom periode posle bariatricheskikh operatsii. Eksperimentalnaia i klinicheskaia gastroenterologiia. 2013;12:27-32 (in Russian)]. EDN SZUUGZ
  23. Smelt HJM, Pouwels S, Smulders JF, Hazebroek EJ. Patient adherence to multivitamin supplementation after bariatric surgery: a narrative review. J Nutr Sci. 2020;9:e46. doi: 10.1017/jns.2020.41
  24. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690-704. doi: 10.1038/s41575-019-0209-8
  25. Romanov VA, Karasev IA, Klimenko NS, et al. Luminal and Tumor-Associated Gut Microbiome Features Linked to Precancerous Lesions Malignancy Risk: A Compositional Approach. Cancers (Basel). 2022;14(21):5207. doi: 10.3390/cancers14215207
  26. Lin H, Yu Y, Zhu L, et al. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol. 2023;59:102601. doi: 10.1016/j.redox.2023.102601
  27. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789-99. doi: 10.1016/j.cell.2014.09.053
  28. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017;106:171-81. doi: 10.1016/j.micpath.2016.02.005
  29. Rivière A, Selak M, Lantin D, et al. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shestakova E.A., Klimenko N.S., Pokrovskaya E.V., Sineokaya M.S., Koshechkin S.I., Odintsova V.E., Shestakova M.V. Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).