Reconstructive surgery of the nose. Prospects of tissue engineering and three-dimensional printing in rhinosurgery: A review
- Authors: Kokaev R.I.1,2, Musaeva I.I.2, Nakazova A.A.2, Abataeva A.S.2
-
Affiliations:
- Vladikavkaz Scientific Centre of Russian Academy of Sciences
- North Ossetian State Medical Academy
- Issue: Vol 27, No 9 (2025): Otorhinolaryngology and pulmonology
- Pages: 543-548
- Section: Articles
- URL: https://journals.rcsi.science/2075-1753/article/view/356631
- DOI: https://doi.org/10.26442/20751753.2025.9.203291
- ID: 356631
Cite item
Full Text
Abstract
Surgical intervention on the nose is a complex of operations aimed at restoring the anatomical and physiological structure of the nose. Traditionally, various methods are used in nasal surgery: the use of the patient's own tissues (autoplastic operations), implantation of biomaterials taken from other people (alloplastic operations), or synthetic or artificial materials to eliminate defects. However, the number of autogenous cartilages is limited, not to mention that additional incisions inevitably occur during the extraction of ear cartilage and rib cartilage, which can lead to complications in the donor area. Tissue engineering, which has been actively developing for many years, represents a promising approach to the reconstruction of tissues and organs, including the nose. Recently, there has been increased interest in creating new tissues and skeletons for organs using 3D printing technology. This technology allows precise control of the microarchitecture and internal structure, which creates ideal conditions for cell population. There are only a few studies devoted to tissue engineering of cartilage tissue, the use of stem cells and growth factors for this purpose. This review provides basic information about available research on standard surgical approaches, as well as the use of stem cells, biomaterials and three-dimensional printing for nasal reconstruction.
Full Text
##article.viewOnOriginalSite##About the authors
Romesh I. Kokaev
Vladikavkaz Scientific Centre of Russian Academy of Sciences; North Ossetian State Medical Academy
Email: musaevaiman2002@mail.ru
ORCID iD: 0000-0002-2326-1348
Cand. Sci. (Med.), Institute of Biomedical Investigations
Russian Federation, Vladikavkaz; VladikavkazIman I. Musaeva
North Ossetian State Medical Academy
Author for correspondence.
Email: musaevaiman2002@mail.ru
ORCID iD: 0009-0007-7846-8163
Student
Russian Federation, VladikavkazAmina A. Nakazova
North Ossetian State Medical Academy
Email: musaevaiman2002@mail.ru
ORCID iD: 0009-0006-0108-0219
Student
Russian Federation, VladikavkazAliat S. Abataeva
North Ossetian State Medical Academy
Email: musaevaiman2002@mail.ru
ORCID iD: 0009-0001-0286-6217
Student
Russian Federation, VladikavkazReferences
- Михельсон Н.М. Восстановительные операции челюстно-лицевой области. М.: Медгиз, 1962 [Mikhel'son NM. Vosstanovitel'nye operatsii cheliustno-litsevoi oblasti. Moscow: Medgiz, 1962 (in Russian)].
- Вальтер К. Эволюция ринопластики. Российская ринология. 1996;1:5-15 [Walter С. The evolution of rhinoplasty. Russian Rhinology = Rossiyskaya Rinologiya. 1996;1:5-15 (in Russian)].
- Kaliva M, Chatzinikolaidou M, Vamvakaki M. Applications of smart multifunctional tissue engineering scaffolds. In: Wang Q, ed. Smart Materials for Tissue Engineering: Applications. Royal Society of Chemistry, 2017.
- Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243-62. doi: 10.1016/j.addr.2007.08.027
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. doi: 10.1038/nbt.2958
- Xu T, Zhao W, Zhu JM, et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130-9. doi: 10.1016/j.biomaterials.2012.09.035
- Zarei F, Daraee H. Recent progresses in breast reconstruction: Stem cells, biomaterials, and growth factors. Drug Res (Stuttg). 2018;68(6):311-6. doi: 10.1055/s-0043-122490
- Schmitt B, Ringe J, Häupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stemcells in high-density culture. Differentiation. 2003;71(9-10):567-77. doi: 10.1111/j.1432-0436.2003.07109003.x
- Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondro genesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 2006;12(10):2853-62. doi: 10.1089/ten.2006.12.2853
- Shirasawa S, Sekiya I, Sakaguchi Y, et al. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84-97. doi: 10.1002/jcb.20546
- Daniel RK. The conundrum of the depressor septi nasi muscle. Plast Reconstr Surg. 2014;134(3):480e-1e. doi: 10.1097/PRS.0000000000000418
- Çakır B, Öreroğlu AR, Daniel RK. Surface aesthetics in tip rhinoplasty: A stepby-step guide. Aesthet Surg J. 2014;34(6):941-55. doi: 10.1177/1090820X14537643
- Аlvert JW, Patel AC, Daniel RK. Reconstructive rhinoplasty: operative revision of patients with previous autologous costal cartilage grafts. Plast Reconstr Surg. 2014;133(5):1087-96. doi: 10.1097/PRS.0000000000000119
- Магомедов М.М., Ибрагимов Ш.И., Дадаев И.М., и др. Отдаленные наблюдения применения консервированного хряща при ринопластике. Актуальные вопросы современной оториноларингологии. Сборник трудов X Республиканской научно-практической конференции оториноларингологов Республики Дагестан, посвященной 100-летию образования Дагестанской АССР, Махачкала, 10–11 июня 2021 г. Махачкала: Дагестанский государственный медицинский университет, 2021 [Magomedov MM, Ibragimov ShI, Dadaev IM, et al. Otdalennye nabliudeniia primeneniia konservirovannogo khriashcha pri rinoplastike. Aktual'nye voprosy sovremennoi otorinolaringologii. Sbornik trudov X Respublikanskoi nauchno-prakticheskoi konferentsii otorinolaringologov Respubliki Dagestan, posviashchennoi 100-letiiu obrazovaniia Dagestanskoi ASSR, Makhachkala, 10–11 iiunia 2021 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2021 (in Russian)].
- Магомедов М.М., Азизова Х.А., Салаватова К.Б., и др. Применение консервированного аллохряща в реконструктивной хирургии пирамиды носа. Новые технологии в оториноларингологии. Сборник трудов Межрегиональной научно-практической конференции оториноларингологов СКФО с международным участием, посвященной 100-летию со дня рождения Расула Гамзатова, Махачкала, 23 июня 2023 г. Махачкала: Дагестанский государственный медицинский университет, 2023 [Magomedov MM, Azizova KhA, Salavatova KB, et al. Primenenie konservirovannogo allokhriashcha v rekonstruktivnoi khirurgii piramidy nosa. Novye tekhnologii v otorinolaringologii. Sbornik trudov Mezhregional'noi nauchno-prakticheskoi konferentsii otorinolaringologov SKFO s mezhdunarodnym uchastiem, posviashchennoi 100-letiiu so dnia rozhdeniia Rasula Gamzatova, Makhachkala, 23 iiunia 2023 g. Makhachkala: Dagestanskii gosudarstvennyi meditsinskii universitet, 2023 (in Russian)].
- Колядич Ж.В., Порадовский А.А., Корженевич Е.И. Функциональные ринопластики при седловидных деформациях носа. Оториноларингология. Восточная Европа. 2018;8(1):90-7 [Kaliadzich Z, Poradovskii A, Karzhanevich A. Functional rhinoplasty in cases of saddle nose deformity. Otorhinolaryngology. Eastern Europe. 2018;8(1):90-7 (in Russian)].
- Pak MW, Chan ES, van Hasselt CA. Late complications of nasal augmentation using silicone implants. J Laryngol Otol. 1998;112(11):1074-7. PMID: 10197148
- Курбанов У.А., Давлатов А.А., Джанобилова С.М., и др. Использование реберного аутохряща в реконструктивно-пластической хирургии. Вестник Авиценны. 2011;4(3):7-18 [Kurbanov UA, Davlatov AA, Dzhanobilova SM, et al. The use of costal autologous cartilage in reconstructive and plastic surgery. Vestnik Avitsenny = Avicenna Bulletin. 2011;4(3):7-18 (in Russian)]. doi: 10.25005/2074-0581-2011-13-4-7-18
- Глушко А.В., Гаммадаева С.Ш., Лебедева Ю.В. Хирургическая коррекция короткого носа при дефиците каудальной части носовой перегородки. Пластическая хирургия и эстетическая медицина. 2023;3:18-26 [Glushko AV, Gammadaeva SSh, Lebedeva YuV. Surgical correction of a short nose with deficiency of the caudal part of the nasal septum. Plastic Surgery and Aesthetic Medicine. 2023;(3):18-26 (in Russian)]. doi: 10.17116/plast.hirurgia202303118
- Ceratti TA, Neto AS, Vittorazzi A, et al. Use of a composite auricular graft in nasal alar reconstruction. Rev Bras Cir Plást. 2012;27(4):640-3. doi: 10.1590/S1983-51752012000400030
- Курбанов У.А., Давлатов А.А., Джанобилова С.М., Мирзобеков Х.Ф. Использование ушного композиционного трансплантата при реконструкции крыла носа. Вестник Авиценны. 2016;3(68):22-6 [Kurbanov UA, Davlatov AA, Janobilova SM, Mirzobekov KhF. Using of composite ear graft in reconstruction of wing nose. Vestnik Avitsenny = Avicenna Bulletin. 2016;3(68):22-6 (in Russian)].
- Murrell GL. Auricular cartilage grafts and nasal surgery. Laryngoscope. 2004;114(12):2092-102. doi: 10.1097/01.mlg.0000149440.20608.7c
- Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015;25(48):7406-17. doi: 10.1002/adfm.201503423
- Аббасов ИБ. Основы трехмерного моделирования в графической системе 3 ds Max 2018. Учебное пособие. М.: ДМК Пресс, 2017 [Abbasov IB. Osnovy trekhmernogo modelirovaniia v graficheskoi sisteme 3 ds Max 2018. Uchebnoe posobie. Moscow: DMK Press, 2017 (in Russian)].
- Lee JY, Park JH, Ahn MJ, et al. Long-term study on off-the-shelf tracheal graft: A conceptual approach for urgent implantation. Mater Des. 2020;185:108-19. doi: 10.1016/J.MATDES.2019.10821
- Xiaohong W. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12):814. doi: 10.3390/mi10120814
- Yao Q, Wei B, Guo Y, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):5360. doi: 10.1007/s10856-014-5360-8
- Wang MO, Piard CM, Melchiorri A, et al. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A. 2015;21(9-10):1642-53. doi: 10.1089/ten.tea.2014.0495
- Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
- Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97. doi: 10.1002/term.1682
- Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-55. doi: 10.1007/s10529-015-1921-2
- Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11-12):1304-12. doi: 10.1089/ten.TEA.2011.0543
- Urlić I, Ivković A. Cell sources for cartilage repair-biological and clinical perspective. Cells. 2021;10(9):2496. doi: 10.3390/cells10092496
- Câmara DAD, Shibli JA, Müller EA, et al. Adipose tissue-derived stem cells: The biologic basis and future directions for tissue engineering. Materials (Basel). 2020;13(14):3210. doi: 10.3390/ma13143210
- Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem Cells Int. 2012;2012:461718. doi: 10.1155/2012/461718
- Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther. 2018;9(1):168. doi: 10.1186/s13287-018-0914-1
- Tang Y, Pan ZY, Zou Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med. 2017;21(9):2153-62. doi: 10.1111/jcmm.13138
- Sharma A, Janus JR, Hamilton GS. Regenerative medicine and nasal surgery. Mayo Clinic Proceedings. 2015;90(1):148-58. doi: 10.1016/j.mayocp.2014.10.002
- Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200. doi: 10.1006/excr.2001.5278
- Zarei F, Abbaszadeh A. Stem cell and skin rejuvenation. J Cosmet Laser Ther. 2018;20(3):193-7. doi: 10.1080/14764172.2017.1383615
- Mendelson A, Ahn JM, Paluch K, et al. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg. 2014;133(6):1344-53. doi: 10.1097/PRS.0000000000000232
- Planas J. Use of integraTM in rhinoplasty. In: Shiffman MA, Di Giuseppe A. Advanced Aesthetic Rhinoplasty: Art, Science, and New Clinical Techniques. Berlin, Heidelberg: Springer, 2013. doi: 10.1007/978-3-642-28053-5_47
- Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659-64. doi: 10.1054/bjps.2001.3684
- Tiengo C, Amabile A, Azzena B. The contribution of a dermal substitute in the three-layers reconstruction of a nose tipavulsion. J Plast Reconstr Aesthetic Surg. 2012;65(1):114-7. doi: 10.1016/j.bjps.2011.06.030
- Vahabi S, Rafieian Y. Abbas Zadeh A. The effects of intraoperative esmolol infusion on the postoperative pain and hemodynamic stability after rhinoplasty. J Investig Surg. 2018;31(2):82-8. doi: 10.1080/08941939.2016.1278288
- Liu J, Zhao B, Zhang Y, et al. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A. 2010;94(2):603-10. doi: 10.1002/jbm.a.32730
- Wu J, Xue K, Li H, et al. Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 2013;8(8):e71563. doi: 10.1371/journal.pone.0071563
- Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed Mater. 2014;34:47-56. doi: 10.1016/j.jmbbm.2014.01.019
Supplementary files

