Comparison of the forms of carbohydrate metabolism in children with cystic fibrosis: A review

Cover Page

Cite item

Full Text

Abstract

Background. Forms of glucose metabolism disorders are one of the key processes in the course of cystic fibrosis (CF) and can be variable, starting with impaired glucose tolerance (IGT) and ending with cystic fibrosis-related diabetes (CFRD), which is the most dangerous complication, worsening the prognosis and outcome of disease. Decreased lung function and poor nutritional status are the leading causes of morbidity and mortality in patients with carbohydrate metabolism disorders (CMD).

Materials and methods. The study included 85 children with CF. Patients underwent measurement of anthropometric parameters (height, weight) to assess nutritional status (NS), and spirometry test was used to assess pulmonary function (PF). Of these, 78 patients were assessed with an oral glucose tolerance test (OGTT) at 5 points (0 minutes, 30 minutes, 60 minutes, 90 minutes, 120 minutes) assessing the concentration of venous plasma glucose in mmol/l. The results of the OGTT were assessed in accordance with the diagnostic criteria for CFRD.

Results. According to the Kruskal–Wallis test, the maximum volumetric flow rate during exhalation of 75% FVC (FEF 75) differed between different forms of carbohydrate metabolism (p=0.031). Other indicators of respiratory function didn’t have any significant differences. Using the Mann–Whitney test, pairwise comparisons were performed, so the FEF 75 indicator was statistically significantly lower in the group of children with CFRD than in other groups. There were no statistically significant differences when assessing Z-scores weight/age (WAZ) and height/age (HAZ) depending on the forms of carbohydrate metabolism. However, BMI/age Z-scores (BAZ) were statistically significantly lower in groups of children with CFRD than in other forms of carbohydrate metabolism.

Conclusion. Children with CF in the period of prediabetes don’t have significant impairments in lung function and NS. These disorders are typical for children with CFRD.

About the authors

Nadezhda V. Liabina

National Medical Research Center for Children's Health

Author for correspondence.
Email: marusya.1010@mail.ru

Pediatrician

Russian Federation, Moscow

Pavel A. Tikhonovskiy

National Medical Research Center for Children's Health

Email: marusya.1010@mail.ru

Medical Resident

Russian Federation, Moscow

Olga I. Simonova

National Medical Research Center for Children's Health; Sechenov First Moscow State Medical University (Sechenov University); Morozov Children's City Clinical Hospital

Email: oisimonova@mail.ru

D. Sci. (Med.)

Russian Federation, Moscow; Moscow; Moscow

Serafima G. Bystrova

National Medical Research Center for Children's Health; Sechenov First Moscow State Medical University (Sechenov University)

Email: marusya.1010@mail.ru

Pediatrician, National Medical Research Center for Children's Health, Graduate Student, Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow; Moscow

Ina Sokolov

National Medical Research Center for Children's Health

Email: marusya.1010@mail.ru

Cand. Sci. (Med.)

Russian Federation, Moscow

Irina V. Shirokova

National Medical Research Center for Children's Health

Email: marusya.1010@mail.ru

Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Каширская Н.Ю., Капранов Н.И., Кондратьева Е.И. (ред.) Муковисцидоз. 2-е изд., перераб. и доп. М.: Медпрактика, 2021 [Kashirskaia NIu, Kapranov NI, Kondrat’ieva EI (red.) Mukovistsidoz. 2-e izd., pererab. i dop. Moscow: Medpraktika, 2021 (in Russian)].
  2. Клинические рекомендации. Кистозный фиброз (муковисцидоз) 2021-2022-2023. Разработчик: Союз педиатров России, Ассоциация медицинских генетиков; Российское Респираторное общество; Российское трансплантологическое общество, 2021 [Klinicheskie rekomendatsii. Kistoznyi fibroz (mukovistsidoz) 2021-2022-2023. Razrabotchik: Soiuz pediatrov Rossii, Assotsiatsiia meditsinskikh genetikov; Rossiiskoie Respiratornoie obshchestvo; Rossiiskoie transplantologicheskoiye obshchestvo, 2021 (in Russian)].
  3. Brennan AL, Beynon J. Clinical updates in cystic fibrosis-related diabetes. Semin Respir Crit Care Med. 2015;36(2):236-50. doi: 10.1055/s-0035-1547319
  4. Moheet A, Moran A. New Concepts in the Pathogenesis of Cystic Fibrosis-Related Diabetes. J Clin Endocrinol Metab. 2022;107(6):1503-9. doi: 10.1210/clinem/dgac020
  5. Frost F, Walshaw MJ, Nazareth D. Cystic fibrosis-related diabetes: an update. QJM. 2020;hcaa256. doi: 10.1093/qjmed/hcaa256
  6. Moran A, Pillay K, Becker D, et al. ISPAD Clinical Practice Consensus Guidelines 2018: management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl. 27):64-74.
  7. Lewis C, Blackman SM, Nelson A, et al. Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and sex. Am J Respir Crit Care Med. 2015;191(2):194-200. doi: 10.1164/rccm.201403-0576OC
  8. Kayani K, Mohammed R, Mohiaddin H. Cystic fibrosis-related diabetes. Front Endocrinol (Lausanne). 2018;9:20. doi: 10.3389/fendo.2018.00020
  9. Patel M, McCracken C, Daley T, et al. Trajectories of oral glucose tolerance testing in cystic fibrosis. Pediatr Pulmonol. 2021;56:901-9. doi: 10.1002/ppul.25207
  10. Ticona JH, Lapinel N, Wang J. Future Comorbidities in an Aging Cystic Fibrosis Population. Life (Basel). 2023;13(6):1305. doi: 10.3390/life13061305
  11. Olesen HV, Drevinek P, Gulmans VA, et al. Cystic fibrosis related diabetes in Europe: Prevalence, risk factors and outcome. J Cyst Fibros. 2020;19(2):321-7. doi: 10.1016/j.jcf.2019.10.009
  12. Doan LV, Madison LD. Cystic Fibrosis-Related Diabetes. 2023 Aug 14. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan.
  13. Lurquin F, Buysschaert M, Preumont V. Advances in cystic fibrosis-related diabetes: Current status and future directions. Diabetes Metab Syndr. 2023;17(11):102899. doi: 10.1016/j.dsx.2023.102899
  14. Moran A, Brunzell C, Cohen RC, et al. Clinical care guidelines for cystic fibrosis-related diabetes: A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697-708. DOI:102337/dc10-1768
  15. Sandouk Z, Khan F, Khare S, Moran A. Cystic fibrosis related diabetes (CFRD) prognosis. J34Clin Transl Endocrinol. 2021;26:100278. doi: 10.1016/j.jcte.2021.100278
  16. Sidhaye A, Goldswieg B, Kaminski B, et al. Endocrine complications after solid-organ transplant in cystic fibrosis. J Cyst Fibros. 2019;18:S111-9. doi: 10.1016/j.jcf.2019.08.019
  17. Ntimbane T, Krishnamoorthy P, Huot C, et al. Oxidative stress and cystic fibrosis-related diabetes: a pilot study in children. J Cyst Fibros. 2008;7(5):373-84. doi: 10.1016/j.jcf.2008.01.004
  18. Hull RL, Gibson RL, McNamara S, et al. Islet Interleukin-1β Immunoreactivity Is an Early Feature of Cystic Fibrosis That May Contribute to β-Cell Failure. Diabetes Care. 2018;41(4):823-30. doi: 10.2337/dc17-1387
  19. Iwanicki C, Logomarsino JV. Impaired glucose tolerance, body mass index and respiratory function in patients with cystic fibrosis: A systematic review. Clin Respir J. 2019;13(6):341-54. doi: 10.1111/crj.13019
  20. Granados A, Chan CL, Ode KL, et al. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J Cyst Fibros. 2019;18 Suppl. 2:S3-9. doi: 10.1016/j.jcf.2019.08.016
  21. Kaminski BA, Goldsweig BK, Sidhaye A, et al. Cystic fibrosis related diabetes: Nutrition and growth considerations. J Cyst Fibros. 2019;18 Suppl. 2:S32-7. doi: 10.1016/j.jcf.2019.08.011
  22. Marshall BC, Butler SM, Stoddard M, et al. Epidemiology of cystic fibrosis-related diabetes. J Pediatr 2005;146:681-7. doi: 10.1016/j.jpeds.2004.12.039
  23. Nielsen BU, Faurholt-Jepsen D, Oturai PS, et al. Associations Between Glucose Tolerance, Insulin Secretion, Muscle and Fat Mass in Cystic Fibrosis. Clinical Medicine Insights: Endocrinology and Diabetes. 2021;14. doi: 10.1177/11795514211038259
  24. White H, Pollard K, Etherington C, et al. Nutritional decline in cystic fibrosis related diabetes: the effect of intensive nutritional intervention. J Cyst Fibros. 2009;8:179-85. doi: 10.1016/j.jcf.2008.12.002
  25. Birch L, Lithander FE, Hewer SL, et al. Dietary interventions for managing glucose abnormalities in cystic fibrosis: a systematic review protocol. Syst Rev. 2018;7(1):98. doi: 10.1186/s13643-018-0757-y
  26. Moheet A, Moran A. CF-related diabetes: containing the metabolic miscreant of cystic fibrosis. Pediatr Pulmonol. 2017;52:S37-43. doi: 10.1002/ppul.23762
  27. Mozzillo E, Franceschi R, Piona C, et al. Diabetes and Prediabetes in Children With Cystic Fibrosis: A Systematic Review of the Literature and Recommendations of the Italian Society for Pediatric Endocrinology and Diabetes (ISPED). Front Endocrinol (Lausanne). 2021;12:673539. doi: 10.3389/fendo.2021.673539

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characterization of observed children with CF depending on the NUO.

Download (94KB)
3. Fig. 2. Median age of children with CF by groups of different forms of carbohydrate metabolism.

Download (71KB)
4. Fig. 3. MOS75 index in children with CF depending on the forms of carbohydrate metabolism (group 1 - without NUO, group 2 - INDET, group 3 - NTG, group 4+5 - MHSD without and on insulin therapy).

Download (75KB)
5. Fig. 4. Z-score of BMI/age (BAZ) in children with CF with different forms of carbohydrate metabolism (group 1 - no NUO, group 2 - INDET, group 3 - NTG, group 4 - MHSD without insulin therapy, group 5 - MHSD on insulin therapy).

Download (80KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies