Fibroblast growth factor 21 (FGF21): diagnostic, prognostic and therapeutic aspects in heart failure. A review

Cover Page

Cite item

Full Text

Abstract

Chronic heart failure (CHF) is a global medical, social and economic problem. Currently, the search and study of new biomarkers that can provide early diagnosis of CHF, serve as a laboratory tool for assessing the effectiveness of treatment, or be used as prognostic markers and risk stratification criteria are ongoing. Scientists' interest is focused, in particular, on studying the role of fibroblast growth factor 21 (FGF21) in CHF. There is increasing evidence highlighting the value of FGF21 as a new marker for the diagnosis and assessment of prognosis in patients with CHF. The role of FGF21 in CHF is very interesting due to its cardioprotective aspects. Final confirmation of the diagnostic, prognostic and therapeutic roles of FGF21 will come from future studies.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579

Cand. Sci. (Med.)

Russian Federation, Moscow

Natalia V. Teplova

Pirogov Russian National Research Medical University

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-7181-4680

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Elena V. Reznik

Pirogov Russian National Research Medical University

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Irina E. Baykova

Pirogov Russian National Research Medical University

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290

Cand. Sci. (Med.)

Russian Federation, Moscow

Nyurzhanna Kh. Khadzhieva

MedEstet Genetics and DNA Clinic

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-5520-281X

Cand. Sci. (Med.)

Russian Federation, Moscow

Kira V. Voronkova

Pirogov Russian National Research Medical University

Email: kiravoronkova@yandex.ru
ORCID iD: 0000-0003-1111-6378

D. Sci. (Med.)

Russian Federation, Moscow

Irina V. Kovtiukh

Pirogov Russian National Research Medical University

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-9176-1889

Аssistant

Russian Federation, Moscow

Ramiz K. Valiev

Loginov Moscow Clinical Scientific Center

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716

Cand. Sci. (Med.)

Russian Federation, Moscow

Irina A. Kotikova

Pirogov Russian National Research Medical University

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499

Student

Russian Federation, Moscow

Igor G. Nikitin

Pirogov Russian National Research Medical University

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

D. Sci. (Med.), Prof.

Russian Federation, Moscow

References

  1. Lee J, Oh O, Park DI, et al. Scoping review of measures of comorbidities in heart failure. J Cardiovasc Nurs. 2024;39(1):5-17. doi: 10.1097/JCN.0000000000001016
  2. Doherty DJ, Docherty KF, Gardner RS. Review of the National Institute for Health and Care Excellence guidelines on chronic heart failure. Heart. 2024;110(7):466-75. doi: 10.1136/heartjnl-2022-322164
  3. Калюжин В.В., Тепляков А.Т., Черногорюк Г.Э., и др. Хроническая сердечная недостаточность: синдром или заболевание? Бюллетень сибирской медицины. 2020;19(1):134-9 [Kalyuzhin VV, Teplyakov AT, Chernogoryuk GE, et al. Chronic heart failure: syndrome or disease? Bulletin of Siberian Medicine. 2020;19(1):134-9 (in Russian)]. doi: 10.20538/1682-0363-2020-1-134-139
  4. Kretzschmar T, Westphal J, Neugebauer S, et al. Metabolic profiling identifies 1-MetHis and 3-IPA as potential diagnostic biomarkers for patients with acute and chronic heart failure with reduced ejection fraction. Circ Heart Fail. 2024;17(1):e010813. doi: 10.1161/CIRCHEARTFAILURE.123.010813
  5. Голухова Е.З., Теряева Н.Б., Алиева А.М. Натрийуретические пептиды – маркеры и факторы прогноза при хронической сердечной недостаточности. Креативная кардиология. 2007;1-2:126-36 [Golukhova EZ, Teryaeva NB, Alieva AM. Natriuretic peptides: markers and prognostic factors in chronic heart failure. Creative Cardiology. 2007;1-2:126-36 (in Russian)].
  6. Голухова Е.З., Алиева А.М. Клиническое значение определения натрийуретических пептидов у больных с хронической сердечной недостаточностью. Кардиология и сердечно-сосудистая хирургия. 2007;47(1):45-51 [Golukhova EZ, Alieva AM. Clinical value of natriuretic peptides detection at the patients with chronic heart failure. The Russian Journal of Cardiology & Cardiovascular Surgery. 2007;47(1):45-51 (in Russian)].
  7. Goutam RS, Kumar V, Lee U, Kim J. Exploring the structural and functional diversity among FGF signals: A comparative study of human, mouse, and xenopus FGF ligands in embryonic development and cancer pathogenesis. Int J Mol Sci. 2023;24(8):7556. doi: 10.3390/ijms24087556
  8. Yan J, Nie Y, Cao J, et al. The roles and pharmacological effects of FGF21 in preventing aging-associated metabolic diseases. Front Cardiovasc Med. 2021;8:655575. doi: 10.3389/fcvm.2021.655575
  9. Shao W, Jin T. Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Dis Transl Med. 2022;8(1):19-25. doi: 10.1016/j.cdtm.2021.08.005
  10. Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci. 2021;58(5):311-28. doi: 10.1080/10408363.2020.1864278
  11. Falamarzi K, Malekpour M, Tafti MF, et al. The role of FGF21 and its analogs on liver associated diseases. Front Med (Lausanne). 2022;9:967375. doi: 10.3389/fmed.2022.967375
  12. Алиева А.М., Байкова И.Е., Резник Е.В., и др. Фактор роста фибробластов 21-новый инструмент в многокомпонентной оценке сердечно-сосудистых заболеваний. Российский медицинский журнал. 2022;28(1):75-88 [Alieva AM, Baikova IE, Reznik EV, et al. Fibroblast growth factor 21 as a new tool in the multicomponent assessment of cardiovascular diseases. Russian Medicine. 2022;28(1):75-88 (in Russian)]. doi: 10.17816/medjrf108900
  13. Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne). 2023;14:1150222. doi: 10.3389/fendo.2023.1150222
  14. Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627-35. doi: 10.1172/JCI23606
  15. Cuevas-Ramos D, Mehta R, Aguilar-Salinas CA. Fibroblast growth factor 21 and browning of white adipose tissue. Front Physiol. 2019;10:37. doi: 10.3389/fphys.2019.00037
  16. Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790-7. doi: 10.1016/j.cmet.2013.03.019
  17. Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55(9):2470-8. doi: 10.2337/db05-1435
  18. Rosales-Soto G, Diaz-Vegas A, Casas M, et al. Fibroblast growth factor-21 potentiates glucose transport in skeletal muscle fibers. J Mol Endocrinol. 2020:JME-19-0210.R2. doi: 10.1530/JME-19-0210
  19. Tucker W, Tucker B, Rye KA, Ong KL. Fibroblast growth factor 21 in heart failure. Heart Fail Rev. 2023;28(1):261-72. doi: 10.1007/s10741-022-10268-0
  20. Sarruf DA, Thaler JP, Morton GJ, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817-24. doi: 10.2337/db09-1878
  21. Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20(4):670-7. doi: 10.1016/j.cmet.2014.07.012
  22. Fisher FM, Chui PC, Antonellis PJ, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59(11):2781-9. doi: 10.2337/db10-0193
  23. Geng L, Liao B, Jin L, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep. 2019;26(10):2738-52.e4. doi: 10.1016/j.celrep.2019.02.014
  24. Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4:2019. doi: 10.1038/ncomms3019
  25. Planavila A, Redondo-Angulo I, Ribas F, et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res. 2015;106(1):19-31. doi: 10.1093/cvr/cvu263
  26. Joki Y, Ohashi K, Yuasa D, et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun. 2015;459(1):124-30. doi: 10.1016/j.bbrc.2015.02.081
  27. Planavila A, Redondo-Angulo I, Villarroya F. FGF21 and cardiac physiopathology. Front Endocrinol (Lausanne). 2015;6:133. doi: 10.3389/fendo.2015.00133
  28. Rius-Pérez S, Torres-Cuevas I, Millán I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev. 2020;2020:1452696. doi: 10.1155/2020/1452696
  29. Pan X, Shao Y, Wu F, et al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1-7) axis in mice. Cell Metab. 2018;27(6):1323-37.e5. doi: 10.1016/j.cmet.2018.04.002
  30. Huang Z, Xu A, Cheung BMY. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep. 2017;19(4):28. doi: 10.1007/s11906-017-0730-5
  31. Yang M, Liu C, Jiang N, et al. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne). 2023;14:1220426. doi: 10.3389/fendo.2023.1220426
  32. Wang N, Xu TY, Zhang X, et al. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes. Int Immunopharmacol. 2018;56:301-9. doi: 10.1016/j.intimp.2018.01.048
  33. Furukawa N, Koitabashi N, Matsui H, et al. DPP-4 inhibitor induces FGF21 expression via sirtuin 1 signaling and improves myocardial energy metabolism. Heart Vessels. 2021;36(1):136-46. doi: 10.1007/s00380-020-01711-z
  34. Chou RH, Huang PH, Hsu CY, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016;6:33953. doi: 10.1038/srep33953
  35. Fan L, Gu L, Yao Y, Ma G. Elevated serum fibroblast growth factor 21 is relevant to heart failure patients with reduced ejection fraction. Comput Math Methods Med. 2022;2022:7138776. doi: 10.1155/2022/7138776
  36. Sommakia S, Almaw NH, Lee SH, et al. FGF21 (fibroblast growth factor 21) defines a potential cardiohepatic signaling circuit in end-stage heart failure. Circ Heart Fail. 2022;15(3):e008910. doi: 10.1161/CIRCHEARTFAILURE.121.008910
  37. Ianoș RD, Pop C, Iancu M, et al. Diagnostic performance of serum biomarkers fibroblast growth factor 21, galectin-3 and copeptin for heart failure with preserved ejection fraction in a sample of patients with type 2 diabetes mellitus. Diagnostics (Basel). 2021;11(9):1577. doi: 10.3390/diagnostics11091577
  38. Gu L, Jiang W, Zheng R, et al. Fibroblast growth factor 21 correlates with the prognosis of dilated cardiomyopathy. Cardiology. 2021;146(1):27-33. doi: 10.1159/000509239
  39. Gu L, Jiang W, Jiang W, et al. Elevated serum FGF21 levels predict heart failure during hospitalization of STEMI patients after emergency percutaneous coronary intervention. Peer J. 2023;11:e14855. doi: 10.7717/peerj.14855
  40. Yan B, Ma S, Yan C, Han Y. Fibroblast growth factor 21 and prognosis of patients with cardiovascular disease: A meta-analysis. Front Endocrinol (Lausanne). 2023;14:1108234. doi: 10.3389/fendo.2023.1108234

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Members of the FGFs family.

Download (200KB)
3. Fig. 2. Effects of FGF21 on different organs and tissues.

Download (260KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies