Comparative analysis of methods for creating virtual three-dimensional models of the lungs from computed tomography images in the practice of a tuberculosis organization using Materialise software

Cover Page

Cite item

Full Text

Abstract

Background. One of the important conditions for the final victory over tuberculosis is not only the prevention of its development and early detection, but also the provision of high-quality personalized medical care to the patient. Additive technologies and virtualization technologies are ways to fully reveal this principle in phthisiatric practice.

Aim. Demonstrate the possibilities and evaluate the labor costs (time spent on virtualization and the size of the final digital files of models) while working with the Mimics inPrint 2.0.0.159 and Mimics Medical 21.0.0.406 software systems in the aspect of virtual reconstruction of the lungs of a patient with a destructive form of tuberculosis.

Materials and methods. A comparative analysis of methods for creating virtual three-dimensional models of the lungs from CT images was carried out at the Nizhny Novgorod Regional Clinical Tuberculosis Dispensary. The study involved one patient with a destructive form of tuberculosis of the upper lobe of the left lung. Virtual three-dimensional models were made according to a specially developed algorithm. The time spent for the formation of virtual lung models was analyzed using the built-in function in the "Log" software. The analysis of the size of the obtained virtual lung models in the STL format was carried out using the operating system function from the Windows family "Properties", section "General", subsection "Size".

Results. The most practical software package for virtual lung reconstructions turned out to be Mimics inPrint 2.0.0.159 with the result of the time spent on creating a model of 2 minutes (Mimics Medical 21.0.0.406 – 7 minutes 17 seconds) and a model size of 125 megabytes (Mimics Medical 21.0.0.406 – 26.1 megabyte). The technical nuances and algorithms of lung reconstruction covered in the article using the Mimics inPrint 2.0.0.159 and Mimics Medical 21.0.0.406 software packages will allow the interested person not to make a mistake in realizing their scientific and practical interests in the process of providing personalized care to the patient. The article focuses on the main advantages of the Mimics inPrint 2.0.0.159 software package in comparison with Mimics Medical 21.0.0.406. A brief description of similar programs is given.

Conclusion. The studied software systems successfully coped with the goal assigned to them, which concerned the demonstration of their capabilities and the assessment of labor costs for virtualization. Mimics inPrint 2.0.0.159 turned out to be the most understandable and promising software and application complex for use in everyday clinical practice.

About the authors

Aleksey G. Naumov

Privolzhsky Research Medical University; Nizhny Novgorod Regional Clinical Tuberculosis Dispensary

Author for correspondence.
Email: naumovag@pimunn.ru
ORCID iD: 0000-0003-0412-6877

Assistant of Professor, Privolzhsky Research Medical University, Nizhny Novgorod Regional Clinical Tuberculosis Dispensary

Russian Federation, Nizhny Novgorod; Nizhny Novgorod

Alexander S. Shprykov

Privolzhsky Research Medical University

Email: shprykov_a@pimunn.net
ORCID iD: 0000-0002-2780-6704

D. Sci. (Med.), Prof., Privolzhsky Research Medical University

Russian Federation, Nizhny Novgorod

Dina A. Sutyagina

Privolzhsky Research Medical University

Email: dina-sutyagina@yandex.ru
ORCID iD: 0000-0001-5134-6683

Cand. Sci. (Med.) Assoc. Prof., Privolzhsky Research Medical University

Russian Federation, Nizhny Novgorod

Evgenii S. Grinin

Privolzhsky Research Medical University

Email: eugrinin@yandex.ru
ORCID iD: 0000-0003-3332-1727

Student, Privolzhsky Research Medical University

Russian Federation, Nizhny Novgorod

References

  1. Васильева И.А., Тестов В.В., Стерликов С.А. Эпидемическая ситуация по туберкулезу в годы пандемии COVID-19 – 2020–2021 гг. Туберкулез и болезни легких. 2022;100(3):6-12 [Vasil'eva IA, Testov VV, Sterlikov SA The epidemiological situation of tuberculosis during the COVID-19 pandemic – 2020–2021. Tuberkulez i bolezni legkikh. 2022;100(3):6-12 (in Russian)]. doi: 10.21292/2075-1 230-2022-100-3-6-12
  2. Шиирипей В.Н. Персонифицированная медицина – это медицина будущего. В: Экосистемы Центральной Азии: исследование, сохранение, рациональное использование: материалы XV Убсунурского международного симпозиума, Кызыл, 05–08 июля 2020 г. Красноярск, 2020; c. 430-2 [Shiiripey VN. Personifitsirovannaia meditsina eto meditsina budushchego. In: Ekosistemy Tsentral'noi Azii: issledovanie, sokhranenie, ratsional'noe ispol'zovanie : Materialy XV Ubsunurskogo mezhdunarodnogo simpoziuma, Kyzyl, 05–08 iyulia 2020 g. Krasnoiarsk, 2020; p. 430-2 (in Russian)].
  3. Белялов Ф.И. Есть ли будущее у персонифицированной медицины? Клиническая медицина. 2014;92(9):73-4 [Belyalov FI. Is there a future for personalized medicine? Klinicheskaia meditsina. 2014;92(9):73-4 (in Russian)].
  4. Бердникова Е.Ф. Инновационное развитие здравоохранения. Вестник Казанского технологического университета. 2012;15(11):300-5 [Berdnikova EF. Innovative healthcare development. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012;15(11):300-5 (in Russian)].
  5. Боркова Е.А., Наполова Е.А., Орлов Е.Р. Проблемы развития и внедрения инноваций в здравоохранении в России. Креативная экономика. 2019;13(7):1495-502 [Borkova EA, Napolova EA, Orlov ER. Problems of development and implementation of innovations in healthcare in Russia. Kreativnaia ekonomika. 2019;13(7):1495-502 (in Russian)]. doi: 10.18334/ce.13.7.40833
  6. Васильева И.А., Стерликов С.А., Паролина Л.Е., и др. Проблемы кадрового обеспечения противотуберкулезной службы врачами-фтизиатрами. Туберкулез и болезни легких. 2022;100(6):7-14 [Vasil'eva IA, Sterlikov SA, Parolina LE, et al. Problems of staffing the anti-tuberculosis service by phthisiatricians. Tuberkulez i bolezni legkikh. 2022;100(6):7-14 (in Russian)]. doi: 10.21292/2075-1230-2022-100-6-7-14
  7. Erokhin VV. The achievements and the way of innovative development оf Phthisiology. Annals of the Russian Academy of Medical Sciences. 2012;67(11):4-8 [Erokhin VV The achievements and the way of innovative development оf Phthisiology. Annals of the Russian Academy of Medical Sciences. 2012;67(11):4-8 (in Russian)]. doi: 10.15690/vramn.v67i11.464
  8. Леонов С.В. Использование метода компьютерной томографии при судебно-медицинской идентификации личности. Судебная медицина. 2020;6(4):41-5 [Leonov SV. The use of the method of computed tomography in forensic identification of a person. Sudebnaia meditsina. 2020;6(4):41-5 (in Russian)]. doi: 10.19048/fm339
  9. Филатова Е.А., Скорняков С.Н., Медвинский И.Д., и др. Применение технологии 3D-моделирования органов грудной клетки для повышения эффективности диагностических вмешательств во фтизиопульмонологии. Туберкулез и болезни легких. 2019;97(10):45-52 [Filatova EA, Skornyakov SN, Medvinskiy ID, et al. The use of 3D modeling technology of the chest organs to improve the efficiency of diagnostic interventions in phthisiopulmonology. Tuberkulez i bolezni legkikh. 2019;97(10):45-52 (in Russian)]. doi: 10.21292/2075-1230-2019-97-10-45-52
  10. Бородулина Е.А., Колсанов А.В., Рогожкин П.В., Манукян А.А. Применение 3D-моделирования для определения параметров хирургического вмешательства при туберкулезе легких. Туберкулез и болезни легких. 2020;98(6):47-51 [Borodulina EA, Kolsanov AV, Rogozhkin PV, Manukyan AA. Application of 3D modeling to determine the parameters of surgical intervention in pulmonary tuberculosis. Tuberkulez i bolezni legkikh. 2020;98(6):47-51 (in Russian)]. doi: 10.21292/2075-1230-2020-98-6-47-51
  11. Умаров Н.А., Нурмеев Н.Н., Нурмеев И.Н., и др. Теоретические и практические аспекты использования 3D-печатной и cерийной ортопедической стельки у пациентов с симптоматическим плоскостопием. Вестник медицинского института "РЕАВИЗ": реабилитация, врач и здоровье. 2019;5(41):97-101 [Umarov NA, Nurmeev NN, Nurmeev IN, et al. Theoretical and practical aspects of using 3D-printed and serial orthopedic insoles in patients with symptomatic flat feet. Vestnik meditsinskogo instituta "REAVIZ": reabilitatsiia, vrach i zdoroi'e. 2019;5(41):97-101 (in Russian)].
  12. Донник А.М., Иванов Д.В., Коссович Л.Ю., и др. Создание трехмерных твердотельных моделей позвоночника с транспедикулярной фиксацией c использованием специализированного программного обеспечения. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2019;19(4):424-38 [Donnik AM, Ivanov DV, Kossovich LYu, et al. Creation of 3D solid models of the spine with transpedicular fixation using specialized software. Izvestiia Saratovskogo universiteta. Novaia seriia. Seriia: Matematika. Mekhanika. Informatika. 2019;19(4):424-38 (in Russian)]. doi: 10.18500/1816-9791-2019-19-4-424-438
  13. Филиппов А.А., Успенский В.Е., Грубенко Г.А., и др. Оценка структурных и функциональных особенностей реимплантированного аортального клапана через 18 месяцев после операции David I с использованием методики высокоточного моделирования структур корня аорты. Российский журнал персонализированной медицины. 2022;2(3):78-88 [Filippov AA, Uspenskiy VE, Grubenko GA, et al. Evaluation of the structural and functional features of the reimplanted aortic valve 18 months after the David I operation using the technique of high-precision modeling of the structures of the aortic root. Rossiyskii zhurnal personalizirovannoi meditsiny. 2022;2(3):78-88 (in Russian)]. doi: 10.18705/2782-3806-2022-2-3-78-88
  14. Рагимов Ч.Р., Фарзалиев И.М., Ахмедов С.Г., Рагимли М.Ч. Реконструкция травматических повреждении нижней стенки орбиты с применением метода виртуального биомоделирования. OFTALMOLOGIYA. 2018;1(26):121-7 [Ragimov ChR, Farzaliev IM, Akhmedov SG, Ragimli MCh. Reconstruction of traumatic injuries of the lower wall of the orbit using the method of virtual biomodeling. OFTALMOLOGIYA. 2018;1(26):121-7 (in Russian)].
  15. Wang J, Huang Z, Wang F, et al. Materialise's interactive medical image control system (MIMICS) is feasible for volumetric measurement of urinary calculus. Urolithiasis. 2020;48(5):443-6. doi: 10.1007/s00240-019-01158-6
  16. Kronig SAJ, Kronig ODM, Zurek M, Van Adrichem LNA. Orbital volume, ophthalmic sequelae and severity in unilateral coronal synostosis. Childs Nerv Syst. 2021;37(5):1687-94. doi: 10.1007/s00381-021-05065-3
  17. Huang X, Fan N, Wang HJ, et al. Application of 3D printed model for planning the endoscopic endonasal transsphenoidal surgery. Sci Rep. 2021;11(1):5333. doi: 10.1038/s41598-021-84779-5
  18. Li J, Zhang H, Yin P, et al. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software. Biomed Res. Int. 2015;2015:171672. doi: 10.1155/2015/171672
  19. Chen T, Que YT, Zhang YH, et al. Using Materialise's interactive medical image control system to reconstruct a model of a patient with rectal cancer and situs inversus totalis: A case report. World J Clin Cases. 2020;8(4):806-14. doi: 10.12998/wjcc.v8.i4.806
  20. Копотилова В.Г., Пирус А.В., Крылова А.И. Сравнительный анализ методов создания трехмерной модели из снимков МРТ. В: Наука, техника, промышленное производство: история, современное состояние, перспективы: Материалы региональной научно-практической конференции студентов и аспирантов, Владивосток, 13–28 декабря 2021 года. Владивосток, 2022; c. 35-9 [Kopotilova VG, Pirus AV, Krylova AI. Comparative analysis of methods for creating a three-dimensional model from MRI images. In: Nauka, tekhnika, promyshlennoe proizvodstvo: istoriia, sovremennoe sostoianie, perspektivy: Materialy regional'noi nauchno-prakticheskoi konferentsii studentov i aspirantov, Vladivostok, 13–28 dekabria 2021 goda. Vladivostok, 2022; p. 35-9 (in Russian)].
  21. Наумов А.Г., Шпрыков А.С., Крюков Э.Р. Опыт использования аддитивных технологий на примере трехмерной реконструкции легких в клинической практике противотуберкулезного диспансера. Пульмонология. 2022;32(1):109-17 [Naumov AG, Shprykov AS, Kryukov ER. Experience in the use of additive technologies on the example of three-dimensional reconstruction of the lungs in the clinical practice of an anti-tuberculosis dispensary. Pul'monologiia. 2022;32(1):109-17 (in Russian)]. doi: 10.18093/0869-0189-2022-32-1-109-117
  22. Materialise Mimics inPrint. System Requirements. Minimum System Requirements. Available at: https://www.materialise.com/en/medical/software/materialise-mimics-inprint/system-requirements. Accessed: 09.09.2022.
  23. Materialise Mimics. System Requirements. Minimum System Requirements. Available at: https://www.materialise.com/en/medical/mimics-innovation-suite/mimics/system-requirements. Accessed: 09.09.2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Interface of the Mimics inPrint software package.

Download (33KB)
3. Fig. 2. a – multiplanar reconstruction of the OGK; b – selection of the radiological density range “Lungs (CT)”

Download (111KB)
4. Fig. 3. a – ready-made virtual model of the lungs and TBD with surrounding artifacts; b – isolated model of lungs and TBD without artifacts.

Download (118KB)
5. Fig. 4. a – capabilities of the “Prepare Print” service: adding inscriptions, creating connections, repairing the model, exporting the model; b – final virtual model of the lungs of a patient with a destructive form of tuberculosis of the left lung when previewed in the 3D Viewer program.

Download (79KB)
6. Fig. 5. Interface of the Mimics Medical software package.

Download (53KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies