The impact of sports on the normal functioning of the prostate gland: A review

Cover Page

Cite item

Full Text

Abstract

This article explores the relationship of physical activity to the normal functioning of the prostate gland. The biomechanism of hormonal activity during exercise was studied, and special attention was paid to the biomechanism of an actively working muscle and the release of myokines. The analysis of the relationship between myokines and the functioning of the prostate gland was carried out. It has been established that physical activity reduces the risk of developing prostate diseases and is an important method of prevention.

About the authors

Anton V. Ershov

Sechenov First Moscow State Medical University (Sechenov University); Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
Email: salavatprof@mail.ru
ORCID iD: 0000-0001-5758-8552
SPIN-code: 2059-3248

D. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University), Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Russian Federation, Moscow; Moscow

References

  1. Селезнева И.С., Иванцова М.Н. Биохимические изменения при занятиях физкультурой и спортом: учебное пособие. Министерство науки и высшего образования Российской Федерации. Екатеринбург: Издательство Уральского университета, 2019; c. 162 [Selezneva IS, Ivantsova MN. Biokhimicheskiie izmeneniia pri zaniatiiakh fizkul'turoi i sportom: uchebnoie posobiie. Ministerstvo nauki i vysshego obrazovaniia Rossiiskoi Federatsii. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2019; p. 162 (in Russian)].
  2. Погодина С.В., Алексанянц Г.Д. Адаптация изменения глюкокортикоидной активности в организме высококвалифицированных спортсменов различных половозрастных групп. Теория и практика физической культуры. 2016;(9):49-52 [Pogodina SV, Aleksanyants GD. Adaptive changes of glucocorticoid activity in the body of elite athletes of different gender and age groups. Theory and Practice of Physical Culture. 2016;(9):49-52 (in Russian)].
  3. Ермаченко О.Ю., Алексанянц Г.Д., Медведева О.А. Определение уровня кортизола и 17α-ОНП у высококвалифицированных акробатов в покое и после стандартной нагрузки. Теория и практика физической культуры. 2021;3:208-9 [Ermachenko OYu, Aleksanyants GD, Medvedeva OA. Determination of the level of cortisol and 17α-SNP in highly skilled acrobats at rest and after standard exercise. Theory and Practice of Physical Culture. 2021;3:208-9 (in Russian)].
  4. Mohd Azmi NAS, Juliana N, Azmani S, et al. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. Int J Environ Res Public Health. 2021;18(2):676. doi: 10.3390/ijerph18020676
  5. Fabre B, Grosman H, Gonzalez D, et al. Prostate Cancer, High Cortisol Levels and Complex Hormonal Interaction. Asian Pac J Cancer Prev. 2016;17(7):3167-71.
  6. El-Alfy M, Luu-The V, Huang XF, et al. Localization of type 5 17beta-hydroxysteroid dehydrogenase, 3beta-hydroxysteroid dehydrogenase, and androgen receptor in the human prostate by in situ hybridization and immunocytochemistry. Endocrinology. 1999;140(3):1481-91. doi: 10.1210/endo.140.3.6585
  7. Oelke M, Bachmann A, Descazeaud A, et al. EAU guidelines on the treatment and follow-up of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur Urol. 2013;64(1):118-40. doi: 10.1016/j.eururo.2013.03.004
  8. Csikós E, Horváth A, Ács K, et al. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules. 2021;26(23):7141. doi: 10.3390/molecules26237141
  9. Medina JJ, Parra RO, Moore RG. Benign prostatic hyperplasia (the aging prostate). Med Clin North Am. 1999;83(5):1213-29. doi: 10.1016/s0025-7125(05)70159-0
  10. Park II, Zhang Q, Liu V, et al. 17Beta-estradiol at low concentrations acts through distinct pathways in normal versus benign prostatic hyperplasia-derived prostate stromal cells. Endocrinology. 2009;150(10):4594-605. doi: 10.1210/en.2008-1591
  11. Kester RR, Mooppan UM, Gousse AE, et al. Pharmacological characterization of isolated human prostate [published correction appears in J Urol. 2003;170(6 Pt 1):2394]. J Urol. 2003;170(3):1032-8. doi: 10.1097/01.ju.0000080440.74266.b1
  12. Li MK, Garcia LA, Rosen R. Lower urinary tract symptoms and male sexual dysfunction in Asia: a survey of ageing men from five Asian countries. BJU Int. 2005;96(9):1339-54. doi: 10.1111/j.1464-410X.2005.05831.x
  13. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt. 3):851-8. doi: 10.1113/jphysiol.2002.034850
  14. Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в системной регуляции. Патологическая физиология и экспериментальная терапия. 2011;1:3-19 [Lukyanova LD. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Pathological Physiology and Experimental Therapy. 2011;1:3-19 (in Russian)].
  15. Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, et al. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol. 1997;499 (Pt. 3):833-41. doi: 10.1113/jphysiol.1997.sp021972
  16. Pedersen BK. IL-6 signalling in exercise and disease. Biochem Soc Trans. 2007;35(Pt. 5):1295-7. doi: 10.1042/BST0351295
  17. Steensberg A, van Hall G, Osada T, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529 Pt. 1(Pt. 1):237-42. doi: 10.1111/j.1469-7793.2000.00237.x
  18. Bastard JP, Maachi M, Van Nhieu JT, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002;87(5):2084-9. doi: 10.1210/jcem.87.5.8450
  19. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278(46):45777-84. doi: 10.1074/jbc.M301977200
  20. Starr R, Willson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997;387(6636):917-21. doi: 10.1038/43206
  21. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8. doi: 10.1038/nature10777
  22. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98(4):E769-78. doi: 10.1210/jc.2012-2749
  23. Miyamoto-Mikami E, Sato K, Kurihara T, et al. Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS One. 2015;10(3):e0120354. doi: 10.1371/journal.pone.0120354
  24. Löffler D, Müller U, Scheuermann K, et al. Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab. 2015;100(4):1289-99. doi: 10.1210/jc.2014-2932
  25. Huh JY, Panagiotou G, Mougios V, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725-38. doi: 10.1016/j.metabol.2012.09.002
  26. Perakakis N, Triantafyllou GA, Fernández-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017;13(6):324-37. doi: 10.1038/nrendo.2016.221
  27. Crujeiras AB, Pardo M, Arturo RR, et al. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol. 2014;26(2):198-207. doi: 10.1002/ajhb.22493
  28. Gutierrez-Repiso C, Garcia-Serrano S, Rodriguez-Pacheco F, et al. FNDC5 could be regulated by leptin in adipose tissue. Eur J Clin Invest. 2014;44(10):918-25. doi: 10.1111/eci.12324
  29. Pardo M, Crujeiras AB, Amil M, et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol. 2014;2014:857270. doi: 10.1155/2014/857270
  30. Stengel A, Hofmann T, Goebel-Stengel M, et al. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity – correlation with body mass index. Peptides. 2013;39:125-30. doi: 10.1016/j.peptides.2012.11.014
  31. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8. doi: 10.1038/nature10777
  32. Huh JY, Panagiotou G, Mougios V, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725-38. doi: 10.1016/j.metabol.2012.09.002
  33. Löffler D, Müller U, Scheuermann K, et al. Serum Irisin Levels Are Regulated by Acute Strenuous Exercise. J Clin Endocrinol Metab. 2015;100(4):1289-99. doi: 10.1210/jc.2014-2932
  34. Cohen DH, LeRoith D. Obesity, type 2 diabetes, and cancer: the insulin and IGF connection. Endocr Relat Cancer. 2012;19(5):F27-45. doi: 10.1530/ERC-11-0374
  35. Nian L, Shukang G, Shasha W, Xiangyun L. Aerobic exercises ameliorate benign prostatic hyperplasia via IGF-1/IGF-1R/ERK/AKT signalling pathway in prostate tissue of high-fat-diet-fed mice with insulin resistance. Steroids. 2021;175:108910. doi: 10.1016/j.steroids.2021.108910
  36. Rebillard A, Lefeuvre-Orfila L, Gueritat J, Cillard J. Prostate cancer and physical activity: adaptive response to oxidative stress. Free Radic Biol Med. 2013;60:115-24. doi: 10.1016/j.freeradbiomed.2013.02.009
  37. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017-22. doi: 10.1073/pnas.1015950108
  38. Benarroch EE. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693-704. doi: 10.1212/WNL.0000000000001507
  39. Mota P, Barbosa-Martins J, Moura RS, et al. Effects of testosterone replacement on serotonin levels in the prostate and plasma in a murine model of hypogonadism. Sci Rep. 2020;10:14688. doi: 10.1038/s41598-020-71718-z
  40. Pernar CH, Ebot EM, Pettersson A, et al. A Prospective Study of the Association between Physical Activity and Risk of Prostate Cancer Defined by Clinical Features and TMPRSS 2:ERG. Eur Urol. 2019;76(1):33-40. doi: 10.1016/j.eururo.2018.09.041
  41. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2015;20(1):122-8. doi: 10.1016/j.drudis.2014.10.003
  42. Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700-7. doi: 10.1016/j.bmc.2017.06.052
  43. Албертс Б., Брей Д., Льюис Дж., и др. Молекулярная биология клетки: В 3 т. 2-е изд., перераб. и доп. Т. 2. М.: Мир, 1993 [Alberts B, Brei D, L'iuis Dzh, et al. Molekuliarnaia biologiia kletki: V 3 t. 2-e izd., pererab. i dop. T. 2. Moscow: Mir, 1993 (in Russian)].

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies