Exogenous ketone therapy for heart failure: A review

Cover Page

Cite item

Full Text

Abstract

Heart failure is of major clinical and economic importance and remains a major public health problem worldwide. Despite existing treatment approaches, morbidity and mortality in these patients remains high. The progression of heart failure is accompanied by an increase in the metabolism of ketone bodies. The use of exogenous ketones may become a new therapeutic approach to increase cardiac efficiency, reduce energy deficit and improve cardiac function in patients with heart failure. The review presents the available data on ketone body metabolism in patients with heart failure, preclinical and clinical studies demonstrating the beneficial effects of exogenous ketone therapy in animal models and human studies with heart failure, and describes the potential pros and cons of using this therapeutic approach.

About the authors

Yulia O. Aksenova

Chazov National Medical Research Center of Cardiology

Email: bonisana@mail.ru
ORCID iD: 0000-0002-6546-2535

Medical Resident

Russian Federation, Moscow

Yulia F. Osmolovskaya

Chazov National Medical Research Center of Cardiology

Email: bonisana@mail.ru
ORCID iD: 0000-0002-7827-2618

Department Head

Russian Federation, Moscow

Igor V. Zhirov

Chazov National Medical Research Center of Cardiology; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: izhirov@mail.ru
ORCID iD: 0000-0002-4066-2661

D. Sci. (Med.)

Russian Federation, Moscow; Moscow

Allan G. Beniashvili

Mental Health Science Center

Email: izhirov@mail.ru
ORCID iD: 0000-0002-5149-3760

Cand. Sci. (Med.)

Russian Federation, Moscow

Margarita A. Morozova

Mental Health Science Center

Email: izhirov@mail.ru
ORCID iD: 0000-0002-7847-2716

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Sergey N. Tereshchenko

Chazov National Medical Research Center of Cardiology

Email: izhirov@mail.ru
ORCID iD: 0000-0001-9234-6129

D. Sci. (Med.), Prof.

Russian Federation, Moscow

References

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation. 2016;133:e38-60. doi: 10.1161/CIR.0000000000000350
  2. Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140-151. doi: 10.1056/NEJMra063052
  3. Selvaraj S, Kelly DP, Kenneth B. Margulies Implications of Altered Ketone Metabolism and Therapeutic Ketosis in Heart Failure. Circulation. 2020;141(22):1800-12. doi: 10.1161/CIRCULATIONAHA.119.045033
  4. Bedi KC Jr, Snyder NW, Brandimarto J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706-16. doi: 10.1161/CIRCULATIONAHA.115.017545
  5. Lopaschuk GD, Karwi QG, Tian R, et al. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487-513. doi: 10.1161/CIRCRESAHA.121.318241
  6. Takahara S, Soni S, Maayah ZH, et al. Ketone therapy for heart failure: Current evidence for clinical use. Cardiovasc Res. 2022;118:97-87. doi: 10.1093/cvr/cvab068
  7. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25:262-84. doi: 10.1016/j.cmet.2016.12.022
  8. Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med. 2018;5:68. doi: 10.3389/fcvm.2018.00068
  9. Nielsen R, Moller N, Gormsen LC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129-41. doi: 10.1161/CIRCULATIONAHA.118.036459
  10. Horton JL, Davidson MT, Kurishima C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4:e124079. doi: 10.1172/jci.insight.124079
  11. Pietschner R, Kolwelter J, Bosch A, et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. Cardiovasc Diabetol. 2021;20:219. doi: 10.1186/s12933-021-01410-7
  12. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995-2008. doi: 10.1056/NEJMoa1911303
  13. Murthy MS, Pande SV. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987;84(2):378-82. doi: 10.1073/pnas.84.2.378
  14. Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the tca cycle via circulating lactate. Nature. 2017;551:115-8. doi: 10.1038/nature24057
  15. Ho KL, Karwi QG, Wagg C, et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc Res. 2020. doi: 10.1093/cvr/cvaa143
  16. Evans M, McClure TS, Koutnik AP, Egan B. Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med. 2022;52(Suppl. 1):25-67. doi: 10.1007/s40279-022-01756-2
  17. Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev. 1989;5:247-70. doi: 10.1002/dmr.5610050304
  18. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412-26. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
  19. Fukao T, Lopaschuk GD, Mitchell GA, et al. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fat Acids. 2004;70:243-51. doi: 10.1016/j.plefa.2003.11.001
  20. Halestrap AP, Wilson MC. The monocarboxylate transporter family – role and regulation. IUBMB Life. 2012;64(2):109-19. doi: 10.1002/iub.572
  21. Fukao T, Song XQ, Mitchell GA, et al. Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res. 1997;42(4):498-502. doi: 10.1203/00006450-199710000-00013
  22. Cox PJ, Kirk T, Ashmore T, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24:256-68. doi: 10.1016/j.cmet.2016.07.010
  23. Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356(11):1140-51. doi: 10.1056/NEJMra063052
  24. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716-26. doi: 10.1172/JCI120849
  25. Shanmugam G, Wang D, Gounder SS, et al. Reductive stress causes pathological cardiac remodeling and diastolic dysfunction. Antioxid Redox Signal. 2020;32:1293-312. doi: 10.1089/ars.2019.7808
  26. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2181-90. doi: 10.1152/ajpheart.00554.2011
  27. O’Rourke B, Ashok D, Liu T. Mitochondrial Ca(2+) in heart failure: Not enough or too much? J Mol Cell Cardiol. 2020;151:126-34. doi: 10.1016/j.yjmcc.2020.11.014
  28. Sheeran FL, Angerosa J, Liaw NY, et al. Adaptations in Protein Expression and Regulated Activity of Pyruvate Dehydrogenase Multienzyme Complex in Human Systolic Heart Failure. Oxid Med Cell Longev. 2019;2019:4532592. doi: 10.1155/2019/4532592
  29. McCommis KS, Kovacs A, Weinheimer CJ, et al. Nutritional Modulation of Heart Failure in Mitochondrial Pyruvate Carrier-Deficient Mice. Nat Metab. 2020;2(11):1232-47. doi: 10.1038/s42255-020-00296-1
  30. Bedi KC Jr, Snyder NW, Brandimarto J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706-16. doi: 10.1161/CIRCULATIONAHA.115.017545
  31. Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133:698-705. doi: 10.1161/CIRCULATIONAHA.115.017355
  32. Cox PJ, Kirk T, Ashmore T, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24:256-68. doi: 10.1016/j.cmet.2016.07.010
  33. Gormsen LC, Svart M, Thomsen HH, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: A positron emission tomography study. J Am Heart Assoc. 2017;6(3):e005066. doi: 10.1161/JAHA.116.005066
  34. Nielsen R, Moller N, Gormsen LC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139:2129-41. doi: 10.1161/CIRCULATIONAHA.118.036459
  35. Volek JS, Phinney SD. The Art and Science of Low Carbohydrate Performance: A Revolutionary Program to Extend Your Physical and Mental Performance Envelope. Miami, FL: Beyond Obesity LLC, 2012.
  36. Shaw DM, Merien F, Braakhuis A, et al. The effect of 1,3-butanediol on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2019;29:466-73. doi: 10.1123/ijsnem.2018-0284
  37. Scott BE, Laursen PB, James LJ, et al. The effect of 1,3-butanediol and carbohydrate supplementation on running performance. J Sci Med Sport. 2019;22:702-6. doi: 10.1016/j.jsams.2018.11.027
  38. Cunnane SC, Courchesne-Loyer A, Vandenberghe C, et al. Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease. Front Mol Neurosci. 2016;9:53. doi: 10.3389/fnmol.2016.00053
  39. Harvey CJC, Schofield GM, Williden M, McQuillan JA. The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: a randomised controlled clinical trial. J Nutr Metab. 2018;2018:2630565. doi: 10.1155/2018/2630565
  40. Stubbs BJ, Cox PJ, Kirk T, et al. Gastrointestinal effects of exogenous ketone drinks are infrequent, mild, and vary according to ketone compound and dose. Int J Sport Nutr Exerc Metab. 2019;29:596-603. doi: 10.1123/ijsnem.2019-0014
  41. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413-24. doi: 10.1056/NEJMoa2022190
  42. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21:512-7. doi: 10.1038/nm.3828
  43. Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190-5. doi: 10.2337/db15-1356
  44. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. J Am Coll Cardiol Basic Transl Sci. 2020;5:632-44. doi: 10.1016/j.jacbts.2020.02.004
  45. Vishwanath S, Qaderi V, Steves CJ, et al. Cognitive Decline and Risk of Dementia in Individuals With Heart Failure: A Systematic Review and Meta-analysis. J Card Fail. 2022;28(8):1337-48. doi: 10.1016/j.cardfail.2021.12.014
  46. Yap NLX, Kor Q, Teo YN, et al. Prevalence and incidence of cognitive impairment and dementia in heart failure – A systematic review, meta-analysis and meta-regression. Hellenic J Cardiol. 2022;67:48-58. doi: 10.1016/j.hjc.2022.07.005
  47. Poff AM, Moss S, Soliven M, D'Agostino DP. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front Nutr. 2021;8:783659. doi: 10.3389/fnut.2021.783659

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main ways of ATP production in cardiomyocytes.

Download (175KB)
3. Fig. 2. Formation of ketone bodies in the liver.

Download (86KB)
4. Fig. 3. Changes in energy metabolism in the myocardium in heart failure.

Download (377KB)

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies