Verifying small vessel disease and mild cognitive impairment with a computational magnetic resonance imaging analysis

Cover Page

Cite item

Full Text

Abstract

Aim. To illustrate capabilities of the computational brain мagnetic resonance imaging (MRI) analyses on a small vessel disease (SVD) sample.

Materials and methods. Thirty-one patients underwent brain MRI in standard sequences. We used Lesion Segmentation Tool to assess white matter hyperintensities (WMH) volume and Computational Anatomy Toolbox to calculate cortical thickness. Both software plug-ins work within the Statistical Parametric Mapping 12 software for MATLAB. We also performed cognitive testing with the Montreal Cognitive Assessment test and tests to detect hippocampal and executive domain dysfunction.

Results. Sixteen patients had mild vascular cognitive impairment. The Median Fazekas scale score was 2 and 2 points. The median intracranial volume fraction occupied by the WMH was 0.07%. It correlated with the executive domain performance but not with cortical thickness. Cortical thickness within several clusters of the prefrontal complex and temporal lobe correlated with performance in cognitive tests. Among the computed MRI markers of the SVD, the occipital lobe cortical thickness had an area under the curve of 70%, and among the cognitive tests, the cued recall measure had an area under the curve of 73.8% to detect mild cognitive impairment.

Conclusion. The abovementioned metrics is a valuable tool to objectively estimate white and grey matter state in patients with small vessel disease. Performing those analyses helped to assess SVD properties in the sample further and register new correlations between MRI and cognitive markers.

About the authors

Pavel M. Krupenin

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: krupenin_p_m@student.sechenov.ru
ORCID iD: 0000-0001-5203-4497

Graduate Student, Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Vsevolod A. Perepelov

Sechenov First Moscow State Medical University (Sechenov University)

Email: vsevolod.perepelov@gmail.com
ORCID iD: 0000-0002-4741-1988

Cand. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Elena M. Perepelova

Sechenov First Moscow State Medical University (Sechenov University)

Email: elena_perepelova@mail.ru
ORCID iD: 0000-0002-1951-930X

Cand. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Sergey P. Bordovsky

Sechenov First Moscow State Medical University (Sechenov University)

Email: sbordoche@gmail.com
ORCID iD: 0000-0002-6928-2355

Graduate Student, Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Irina S. Preobrazhenskaya

Sechenov First Moscow State Medical University (Sechenov University)

Email: IrinaSP2@yandex.ru
ORCID iD: 0000-0002-9097-898X

D. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Anastasiya A. Sokolova

Sechenov First Moscow State Medical University (Sechenov University)

Email: sokolovastasya2@gmail.com
ORCID iD: 0000-0001-5938-8917

Cand. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Dmitry A. Napalkov

Sechenov First Moscow State Medical University (Sechenov University)

Email: dminap@mail.ru
ORCID iD: 0000-0001-6241-2711

D. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

Olga N. Voskresenskaya

Sechenov First Moscow State Medical University (Sechenov University)

Email: vos-olga@yandex.ru
ORCID iD: 0000-0002-7330-633X

D. Sci. (Med.), Sechenov First Moscow State Medical University (Sechenov University)

Russian Federation, Moscow

References

  1. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351-6. doi: 10.2214/ajr.149.2.351
  2. Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32(6):1318-22. doi: 10.1161/01.STR.32.6.1318
  3. Serag D, Ragab E. Bi-caudate ratio as a MRI marker of white matter atrophy in multiple sclerosis and ischemic leukocencephalopathy. Egypt J Radiol Nucl Med. 2019;50(1):99. doi: 10.1186/s43055-019-0104-x
  4. DeCarli C, Fletcher E, Ramey V, et al. Anatomical mapping of white matter hyperintensities (WMH): Exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke. 2005;36(1):50-5. doi: 10.1161/01.STR.0000150668.58689.f2
  5. Griffanti L, Jenkinson M, Suri S, et al. Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults. Neuroimage. 2018;170:174-81. doi: 10.1016/j.neuroimage.2017.03.024
  6. Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: The DSM-5 approach. Nat Rev Neurol. 2014;10(11):634-42. doi: 10.1038/nrneurol.2014.181
  7. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening. J Am Geriatr Soc. 2005;53(4):695-9. doi: 10.1111/j.1532-5415.2005.53221.x
  8. Sarazin M, Berr C, De Rotrou J, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study. Neurology. 2007;69(19):1859-67. doi: 10.1212/01.wnl.0000279336.36610.f7
  9. Reitan RM, Wolfson D. The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press, 1985.
  10. Smith A. Symbol Digit Modalities Test. Los Angeles, CA: Western Psychological Services, 1973.
  11. Mohs RC, Knopman D, Petersen RC, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl. 2:13-21.
  12. Ferris SH. General measures of cognition. Int Psychogeriatr. 2003;15 Suppl. 1:215-7. doi: 10.1017/S1041610203009220
  13. Starkstein SE, Mayberg HS, Preziosi TJ, et al. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4(2):134-9. doi: 10.1176/jnp.4.2.134
  14. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res. 1982-1983;17(1):37-49. doi: 10.1016/0022-3956(82)90033-4
  15. Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage. 2012;59(4):3774-83. doi: 10.1016/j.neuroimage.2011.11.032
  16. Gaser C, Dahnke R. CAT-A Computational Anatomy Toolbox for the Analysis of Structural MRI Data. 2016. Available at: http://www.neuro.uni-jena.de/hbm2016/GaserHBM2016.pdf. Accessed: 22.04.2022.
  17. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336-48. doi: 10.1016/j.neuroimage.2012.09.050
  18. Yotter RA, Dahnke R, Thompson PM, Gaser C. Topological correction of brain surface meshes using spherical harmonics. Hum Brain Mapp. 2011;32(7):1109-24. doi: 10.1002/hbm.21095
  19. Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-80. doi: 10.1016/j.neuroimage.2006.01.021
  20. Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171-8. doi: 10.1038/nature18933
  21. Llinas-Regla J, Vilalta-Franch J, Lopez-Pousa S, et al. The Trail Making Test: Association With Other Neuropsychological Measures and Normative Values for Adults Aged 55 Years and Older From a Spanish-Speaking Population-Based Sample. Assessment. 2017;24(2):183-96. doi: 10.1177/1073191115602552
  22. Zhuang Y, Zeng X, Wang B, et al. Cortical surface thickness in the middle-aged brain with white matter hyperintense lesions. Front Aging Neurosci. 2017;9:225. doi: 10.3389/fnagi.2017.00225
  23. Wang Y, Yang Y, Wang T, et al. Correlation between White Matter Hyperintensities Related Gray Matter Volume and Cognition in Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis. 2020;29(12):105275. doi: 10.1016/j.jstrokecerebrovasdis.2020.105275
  24. Azarpazhooh MR, Hachinski V. Vascular cognitive impairment: A preventable component of dementia. Handb Clin Neurol. 2019;167:377-91. doi: 10.1016/B978-0-12-804766-8.00020-0
  25. Euston DR, Gruber AJ, McNaughton BL. The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron. 2012;76(6):1057-70. doi: 10.1016/j.neuron.2012.12.002
  26. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci. 2018;19(11):687-700. doi: 10.1038/s41583-018-0067-3
  27. Roe JM, Vidal-Pineiro D, Sorensen O, et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat Commun. 2021;12(1):721. doi: 10.1038/s41467-021-21057-y
  28. Grambaite R, Selnes P, Reinvang I, et al. Executive Dysfunction in Mild Cognitive Impairment is Associated with Changes in Frontal and Cingulate White Matter Tracts. J Alzheimer’s Dis. 2011;27(2):453-62. doi: 10.3233/JAD-2011-110290
  29. Tuladhar AM, van Norden AGW, de Laat KF, et al. White matter integrity in small vessel disease is related to cognition. NeuroImage Clin. 2015;7:518-24. doi: 10.1016/j.nicl.2015.02.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (80KB)
3. Fig. 2

Download (151KB)
4. Fig. 3

Download (213KB)
5. Fig. 4

Download (97KB)

Copyright (c) 2022 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies