Metal-Carbon Nanocomposites FeNi/C: Production, Phase Composition, Magnetic Properties


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

FeNi alloy nanoparticles as a part of metal-carbon nanocomposites were obtained. The synthesis was carried out under conditions of IR annealing of precursors based on joint solution of polyvinyl alcohol (PVA) and hydrates of iron and nickel nitrates. The features of formation of FeNi nanoparticles as a function of the synthesis conditions, as well as the effect of the synthesis temperature and the structure and composition of nanocomposites on their magnetic properties, were studied. It has been established that FeNi alloy nanoparticles can be formed in two ways simultaneously: through the reduction of nanoparticles of nickel-substituted magnetite (Ni, Fe) Fe2O4 and the reduction of Fe2O3 to iron, which dissolves in nickel or Ni3Fe. The average size of the alloy nanoparticles increases from 6 to 14 nm, the size distribution range widens, and its maximum shifts from 3–5 to 9–11 nm as the synthesis temperature increases to 700°C. The growth of nanoparticles occurs owing to agglomeration processes caused by structural changes in the nanocomposite matrix during IR heating. It has been shown that the materials obtained at temperatures above 400°C exhibit ferromagnetic properties and at T = 700°C exhibit properties characteristic of nanosized particles of a solid solution of FeNi. The growth of nanoparticles as the synthesis temperature rises and reduction of iron oxides leads to the increase in saturation magnetization. Changes in the coercive force are determined by an increase in the average size of FeNi nanoparticles with increasing synthesis temperature. So for nanocomposites synthesized at 600°C, the coercive force is maximal, and then a secondary decrease occurs owing to the formation of larger nanoparticles.

Об авторах

D. Muratov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; National University of Science and Technology MISiS

Автор, ответственный за переписку.
Email: muratov@ips.ac.ru
Россия, Moscow, 119991; Moscow, 119049

A. Vasilev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; National University of Science and Technology MISiS

Автор, ответственный за переписку.
Email: vasilev@ips.ac.ru
Россия, Moscow, 119991; Moscow, 119049

M. Efimov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: efimov@ips.ac.ru
Россия, Moscow, 119991

G. Karpacheva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: gpk@ips.ac.ru
Россия, Moscow, 119991

E. Dzidziguri

National University of Science and Technology MISiS

Автор, ответственный за переписку.
Email: avrore@gmail.com
Россия, Moscow, 119049

P. Chernavskiy

Department of Chemistry, Moscow State University

Автор, ответственный за переписку.
Email: chern@kge.msu.ru
Россия, Moscow, 119991


© Pleiades Publishing, Ltd., 2019

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах