Promising NiO–30 wt % Ag–40 wt % Bi2O3 Membrane Material for Separation of Oxygen from Air


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Composite NiO–30 wt % Ag–40 wt % Bi2O3 material was synthesized and studied. The microstructure of this material cooled from 800°C was studied, and the presence of a percolative network of silver in the bulk of composite was shown. The transport properties of this composite (electrical conductivity, oxygen ion transport number, and oxygen fluxes) in the temperature range of 725–800°C were investigated. The oxygen permeability of a membrane based on the NiO–30 wt % Ag–40 wt % Bi2O3 material was calculated and the selectivity of transferred oxygen over nitrogen in the process of separation from air was evaluated. At 800°C, the electrical conductivity was ~50 Ω–1 cm–1, the oxygen ion transport number was 0.02, the oxygen permeability was 2.1 × 10–8 mol cm–1 s–1, and the selectivity of oxygen (over nitrogen) was above 1000. The oxygen permeabilities of some ceramic and cermet membranes and the membrane material fabricated in this work were compared. Composite NiO–30 wt % Ag–40 wt % Bi2O3 shows a high selective oxygen permeability compared to the state-of-the-art analogs and can be used as an ion transport membrane for separation of oxygen from air.

作者简介

I. Kulbakin

Baikov Institute of Metallurgy and Materials Science

编辑信件的主要联系方式.
Email: ivkulbakin@mail.ru
俄罗斯联邦, Moscow, 119334

S. Fedorov

Baikov Institute of Metallurgy and Materials Science

Email: ivkulbakin@mail.ru
俄罗斯联邦, Moscow, 119334

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018