Composite Binders for Concretes with Improved Impact Endurance


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The chemical engineering principles of optimization of the physical and mechanical properties and performance characteristics of dispersed reinforced composite materials are proposed which consist in the integrated effect of a composite binder consisting of jointly ground Portland cement, rice husk ash, a complex of inert fillers, and a hyperplasticizer on the processes of structure formation of cement stone. Here, the effect of increasing the impact endurance increases up to sixfold. It is found that dispersed reinforced concretes with an increased ratio of static tensile strength to static compressive strength Rtens/Rcompr and ductility possess the best endurance to dynamic action. It is proved that this ratio can be increased by using dispersed reinforcement of concretes (so-called fibrous concretes). In experimental studies on penetration of both unreinforced and fiber-reinforced concrete slabs, it is noted that samples of unreinforced concrete are completely fractured into large and small pieces, while samples of fiber-reinforced concrete are not completely fractured, and only through penetration at the impact site was observed; that is, fibrous concrete possesses better impact resistance. These results can be applied to the design of various special structures, such as defense structures of civil defense and emergency situations, fortifications of the Russian Ministry of Defense, and concrete structures of nuclear power plants.

作者简介

R. Fediuk

Training Military Center, Far Eastern Federal University

编辑信件的主要联系方式.
Email: roman44@yandex.ru
俄罗斯联邦, Vladivostok, 690950

A. Mochalov

Training Military Center, Far Eastern Federal University

编辑信件的主要联系方式.
Email: captainvmf@yandex.ru
俄罗斯联邦, Vladivostok, 690950

D. Pezin

Training Military Center, Far Eastern Federal University

编辑信件的主要联系方式.
Email: gera210307@yandex.ru
俄罗斯联邦, Vladivostok, 690950

Yu. Liseitsev

Training Military Center, Far Eastern Federal University

Email: gera210307@yandex.ru
俄罗斯联邦, Vladivostok, 690950

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019