Research of Titanium Saturation with Gas and Feature of Ceramic Layer Formation Using the Oxidative Constructing Approach


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract—Samples made of titanium grade BT 1-0 in the form of disks were subjected to isothermal aging at 875°C with access to atmospheric air for 2, 4, 6, 7, and 13 days. As a result of XRD, it was established that the oxide layer is rutile TiO2. The metal blank absorbs oxygen and nitrogen from atmospheric air, which are concentrated in the surface layer. The increase in the mass of oxygen going to the formation of rutile is 96–98 wt % of the total amount of gas absorbed. The rest of the absorbed gas (2–4 wt %) is contained in the metal blank in the form of solid solutions. The gas absorption rate of a titanium blank is proportional to the rate of rutile formation. The process kinetics for each of the sample surfaces (side and end), which is described by an exponential law, is determined. At the initial stage of the oxidation process, the surface geometry does not affect the rate of formation of the ceramic layer of rutile; subsequently, there is an “acceleration” of rutile growth on the end surface.

Sobre autores

V. Zufman

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vzufman@imet.ac.ru
Rússia, Moscow, 119334

A. Shokodko

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ashokodko@imet.ac.ru
Rússia, Moscow, 119334

I. Kovalev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ikovalev@imet.ac.ru
Rússia, Moscow, 119334

A. Ashmarin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aashmarin@imet.ac.ru
Rússia, Moscow, 119334

A. Ogarkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aogarkov@imet.ac.ru
Rússia, Moscow, 119334

N. Ovsyannikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: novsyannikov@imet.ac.ru
Rússia, Moscow, 119334

A. Klimov

LLC Aurora Borealis

Email: ksolntsev@imet.ac.ru
Rússia, Moscow, 121205

S. Klimaev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sklimaev@imet.ac.ru
Rússia, Moscow, 119334

G. Kochanov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: gkochanov@imet.ac.ru
Rússia, Moscow, 119334

E. Shokodko

National Research Moscow State University of Civil Engineering

Email: ksolntsev@imet.ac.ru
Rússia, Moscow, 129337

A. Chesnokov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: ksolntsev@imet.ac.ru
Rússia, Moscow, 119334

A. Chernyavskii

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: aschernyavskiy@imet.ac.ru
Rússia, Moscow, 119334

K. Solntsev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ksolntsev@imet.ac.ru
Rússia, Moscow, 119334

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019