Porous Carbonated Hydroxyapatite Ceramics Obtained by the Original Method of “Ceramic Biscuit” for Medicine
- Authors: Fadeeva I.V.1, Fomin A.S.1, Filippov Y.Y.2, Bozhkova S.A.3, Labutin D.V.3, Barinov S.M.1
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science
- Institute of Mechanics
- Vreden Russian Institute of Traumatology and Orthopedics
- Issue: Vol 9, No 5 (2018)
- Pages: 879-883
- Section: Materials for Ensuring Human Vital Activity and Environmental Protection
- URL: https://journals.rcsi.science/2075-1133/article/view/207673
- DOI: https://doi.org/10.1134/S207511331805009X
- ID: 207673
Cite item
Abstract
Carbonated hydroxyapatite (CHA) owing to its chemical and phase composition that is similar to that of the inorganic component of native bone tissue is a promising material for reconstructive surgery to heal bone defects that are caused by trauma and extensive surgery. An original method for obtaining porous CHA ceramic granules was developed. To obtain a system of interconnected pores, a protein foam with sucrose was used. The optimum ratio of the protein foam to the ceramic CHA powder was found to be 3: 1 for production of porous ceramics with a homogeneous structure. The mechanical properties of the porous CHA ceramics that we obtained at different ratios between the protein foam and ceramic CHA powder were studied: as the concentration of the ceramic CHA powder increased in the mixture, the compressive strength of the CHA ceramics decreased from 6–7 to 2–3 MPa. The microstructure of the CHA ceramics is characterized by the presence of pores that are different in size, from fractions to tens of microns. In vitro studies of the porous CHA ceramics were performed. The evaluation of the influence of the granules on the growth of rat MMSCs in vitro revealed a decrease in the cell viability with an increase in the concentration of the granules. The reduced viability of the MMSCs in the presence of the granules can be associated with alkalization of the environment by the sintering additive.
About the authors
I. V. Fadeeva
Baikov Institute of Metallurgy and Materials Science
Author for correspondence.
Email: fadeeva_inna@mail.ru
Russian Federation, Moscow, 119334
A. S. Fomin
Baikov Institute of Metallurgy and Materials Science
Email: fadeeva_inna@mail.ru
Russian Federation, Moscow, 119334
Ya. Yu. Filippov
Institute of Mechanics
Email: fadeeva_inna@mail.ru
Russian Federation, Moscow, 119192
S. A. Bozhkova
Vreden Russian Institute of Traumatology and Orthopedics
Email: fadeeva_inna@mail.ru
Russian Federation, St. Petersburg, 195427
D. V. Labutin
Vreden Russian Institute of Traumatology and Orthopedics
Email: fadeeva_inna@mail.ru
Russian Federation, St. Petersburg, 195427
S. M. Barinov
Baikov Institute of Metallurgy and Materials Science
Email: fadeeva_inna@mail.ru
Russian Federation, Moscow, 119334
Supplementary files
