Topology optimization in ROPS-safe design process of operator cabin for forestry, agricultural and construction machinery



如何引用文章

全文:

详细

ROPS (roll over protective structure) and FOPS (falling objects protective structure) today are mandatory elements of every modern operator cabin for forestry, agricultural, construction and other machinery. This passive safety structures, integrated into cabin, can save life of the operator during rollover and heavy objects falling accident. Usually this structures consists of a supporting frame, capable of withstanding all the loads, which are occurring in machine accident. These elements, besides their main purpose, should satisfy additional requirements: not to cut operator visibility range, allow wide doorway for working and emergency doors and so on. Also initial design style solution restricts possible arrangement for load-bearing elements of the ROPS. Last decades in ROPS design process engineers extensively use explicit finite element technique to predict behavior and fitness of the ROPS structure by numerical simulation of rollover loads. This greatly reduce the costs of experiments, allowing to exclude dozens and hundreds of poor solutions at early stage of design without building expensive prototypes. However, uneven search of construction solution, even with support of numerical simulations, can be very time consuming. This work describes two-stage optimization technique, including topology and parametric optimization, which significantly reduce amount of structure variants, analyzed in ROPS design process. Therefore, optimization is an alternative to convenient way of inheritable and intuitive way of design. Topology optimization method with specially built finite element model of the forestry machine cabin used to find the most beneficial loadpaths for ROPS load bearing. Then, simplified shell-beam finite element model built, using results of topology optimization, and a parametric optimization technique used to find optimal cross-sections dimensions for main load-bearing elements of the protection structure. Finally, detailed shell model of the whole cabin elaborated and verified using standard explicit finite element simulations of all ROPS loadcases. Final simulations proved the strength of the designed ROPS structure and give confidence in successful experiment tests. The main advantages of the described two-stage optimization technique are significant reduction of considered variants due to exclude of inappropriate solution in advance, initial design style solution is not changed.

作者简介

D. Vdovin

Bauman Moscow State Technical University

Email: vdovin@bmstu.ru
Ph.D

参考

  1. ГОСТ ISO 8082-22014. Машины для леса самоходные. Лабораторные испытания устройств защиты при опрокидывании и эксплуатационные требования к ним.
  2. ГОСТ ISO 8083-2011. Машины для леса. Устройства защиты от падающих предметов.
  3. ГОСТ ISO 3164-2016. Машины землеройные. Лабораторные испытания по оценке устройств защиты. Требования к пространству, ограничивающему деформацию.
  4. Operator Protective Structures. Practice Notes. [Электронный ресурс] / IPENZ Engineers New Zealand. 2014 URL: https://www.engineeringnz.org/documents/91/Practice_Note_12_Operator_Protective_Structures.pdf
  5. Скобцов И.Г. Оценка несущей способности устройства защиты оператора лесопромышленного трактора с позиций механики разрушения. / Инженерный вестник Дона, 2015, № 2.
  6. P. Gore, R.B. Barjibhe. Design of protective structure of operator cabin against falling object (FOPS) / International Journal of Latest Trends in Engineering and Technology (IJLTET) Vol. 3 Issue 4 March 2014, p. 228-236. ISSN: 2278-621X.
  7. J. Karliński, E. Rusiński, T.Smolnicki. Protective structures for construction and mining machine operators / Automation in Construction 17 (2008) p. 232-244.
  8. B. Clark. The behavior of rollover protective structures subjected to static and dynamic loading conditions. PhD dissertation. School of Civil Engineering Queensland University of Technology. 2005.
  9. Bendsoe M.P. Generating Optimal Topologies in Structural Design Using a Homogenization Method / M.P. Bendsoe, N. Kikuchi // Computer Methods in Applied Mechanics and Engineering. 1988. V. 7. P. 197-224.
  10. Комаров В.А. Проектирование силовых аддитивных конструкций: теоретические основы // Онтология проектирования. 2017. Т. 7, № 2(24). С. 191-206. DO1: 10.18287/2223-9537-2017-7-2-191-206.
  11. Rozvany G.I.N. A critical review of established methods of structural topology optimization // Structural and Multidisciplinary Optimization. 2009. V. 37, no. 3. P. 217-237. doi: 10.1007/s00158-007-0217-0
  12. Сысоева В.В., Чедрик В.В. Алгоритмы оптимизации топологии силовых конструкций // Ученые записки ЦАГИ. 2011. Т. 42, № 2. С. 91-102.
  13. Вдовин Д.С., Котиев Г.О. Технология проектирования силовых деталей на примере вилки блокировки межосевого дифференциала многоосной колесной машины // Тракторы и сельскохозяйственные машины. 2014. № 8. С. 28-31.
  14. Вдовин Д.С., Прокопов В.С. Проектирование направляющего аппарата независимой подвески автомобиля с использованием метода топологической оптимизации. / Известия МГТУ "МАМИ", 2017, № 3(33).
  15. Шаболин М.Л., Вдовин Д.С. Снижение требований к прочности материала подрамника грузового автомобиля с независимой подвеской путем топологической оптимизации конструктивно-силовой схемы. / Известия МГТУ «МАМИ». 2016. № 4(30). С. 90-96.
  16. J.S. Sun, K.H. Lee, H.P. Lee. Comparison of implicit and explicit finite element methods for dynamic problems. / Journal of Materials Processing Technology 105 (2000), pp. 110-118

版权所有 © Vdovin D.C., 2018

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##