Scattering problem of TE-wave on a thin silicon layer covered with graphene

Cover Page

Cite item

Full Text

Abstract

Background. This work focuses on study of optical properties of graphene accounting for the intrinsic optical nonlinearity of this material as well as the effects of the surrounding media. The purpose of the study is to consider a diffraction problem of an electromagnetic wave on a two-dimensional slab covered with a graphene monolayer or a regular lattice of infinite (in one of the longitudinal directions) graphene strips. Materials and methods. Using Green’s functions approach, the diffraction problem is reduced to a nonlinear hypersingular integral equation for solving which we apply the collocation method together with an iterative one in order to account for the effect of optical nonlinearity of graphene. Results and conclusions. The results of numerical simulation of electromagnetic wave scattering at 6 THz on a planar dielectric layer 20 microns thick filled with silicon and covered with graphene are obtained. The results show that changing the chemical potential of graphene leads to a significant change in the reflected wave profile, which can be used to control (modulate) optical signals.

About the authors

Stanislav V. Tikhov

Penza State University

Author for correspondence.
Email: tik.stanislav2015@yandex.ru

Postgraduate student

(40 Krasnaya street, Penza, Russia)

References

  1. Geim A.K., Novoselov K.S. The rise of graphene. Nature Materials. 2007;6:183‒191. doi: 10.1038/nmat1849
  2. Castro Neto A.H., Guinea F., Peres N.M.R. et al. The electronic properties of graphene. Reviews of Modern Physics. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109
  3. Nair R.R., Blake P., Grigorenko A.N. et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308–1308. doi: 10.1126/science.1156965
  4. Wang F., Zhang Y., Tian C. et al. Gate-variable optical transitions in graphene. Science. 2008;320(5873):206–209. doi: 10.1126/science.1152793
  5. Mikhailov S.A., Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and self-consistent field effects. Journal of Physics: Condensed Matter. 2008;20(38):384204. doi: 10.1088/0953-8984/20/38/384204
  6. Cheng J.L., Vermeulen N., Sipe J.E. Third order optical nonlinearity of graphene. New Journal of Physics. 2014;16(5):053014. doi: 10.1088/1367-2630/16/5/053014
  7. Liu M., Yin X., Ulin-Avila E. et al. A graphene-based broadband optical modulator. Nature. 2011;474:64–67. doi: 10.1038/nature10067
  8. Xia F., Mueller T., Lin Y. et al. Ultrafast graphene photodetector. Nature Nanotech. 2009;4:839‒843. doi: 10.1038/nnano.2009.292
  9. Gorbach A.V. Nonlinear graphene plasmonics: Amplitude equation for surface plasmons. Physical Review A. 2013;87:013830. doi: 10.1103/PhysRevA.87.013830
  10. Gorbach A.V., Marini A., Skryabin D.V. Graphene-clad tapered fiber: effective nonlinearity and propagation losses. Optics Letters. 2013;38(24):5244–5247. doi: 10.1364/OL.38.005244
  11. Savostianova N.A., Mikhailov S.A. Third harmonic generation from graphene lying on different substrates: optical-phonon resonances and interference effects. Opt Express. 2017;25(4):3268–3285. doi: 10.1364/OE.25.003268
  12. Smirnov Yu., Tikhov S. The nonlinear eigenvalue problem of electromagnetic wave propagation in a dielectric layer covered with graphene. Photonics. 2023;10(5). doi: 10.3390/photonics10050523
  13. Tikhov S., Valovik D. Electromagnetic guided wave in goubau line with graphene covering: Te case. Photonics. 2023;10(11). doi: 10.3390/photonics10111205
  14. Smirnov Yu., Tikhov S. Boundary Integral Equations Approach for a Scattering Problem of a TE-Wave on a Graphene-Coated Slab. Photonics. 2025;12(456). doi: 10.3390/photonics12050456
  15. Ervin V.J., Stephan E.P. Collocation with Chebyshev polynomials for a hypersingular integral equation on an interval. Journal of Computational and Applied Mathematics. 1992;43(1):221‒229. doi: 10.1016/0377-0427(92)90267-2
  16. Mikhailov S.A., Ziegler K. New Electromagnetic Mode in Graphene. Physical Review Letters. 2007;99:016803. doi: 10.1103/PhysRevLett.99.016803

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».