Problem of electromagnetic wave diffraction on homogeneous dielectric ball coated with graphene

Cover Page

Cite item

Full Text

Abstract

Background. Boundary value problems for Maxwell's equations are widely used in various fields of electrodynamics due to their ability to model complex physical situations associated with the interaction of electromagnetic waves with boundaries and thin layers of materials. The objective of this work is to derive and analyze a system of integral equations for the problem of electromagnetic wave diffraction on a dielectric ball coated with graphene, and to prove the existence and uniqueness of a solution to the boundary value problem. Materials and methods. Using a combination of Stratton-Chu formulas, a system of vector integral equations over the surface of a sphere is obtained. Results. A system of scalar singular integral equations is obtained for searching for four unknown functions. The theorem on the existence and uniqueness of the solution of the system of equations, aswell as the existence and uniqueness of the solution of the boundary value problem of diffraction is proved. Conclusions. The problem of electromagnetic wave diffraction on a dielectric ball coated with graphene has been studied, and a system of equations for numerical solution has been obtained.

About the authors

Yuriy G. Smirnov

Penza State University

Author for correspondence.
Email: mmm@pnzgu.ru

Doctor of physical and mathematical sciences, professor, head of the sub-department of mathematics and supercomputer modeling

(40 Krasnaya street, Penza, Russia)

Oleg V. Kondyrev

Penza State University

Email: mmm@pnzgu.ru

Postgraduate student

(40 Krasnaya street, Penza, Russia)

References

  1. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoy fiziki = Boundary value problems of mathematical physics. Moscow: Nauka, 1973:408. (In Russ.)
  2. Sanches-Palensiya E. Neodnorodnye sredy i teoriya kolebaniy = Inhomogeneous media and the theory of oscillations. Moscow: Mir, 1984:472. (In Russ.)
  3. Nedelec J.-Cl. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer, 2001:329.
  4. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya = Methods of integral equations in scattering theory. Moscow: Mir, 1987:311. (In Russ.)
  5. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Springer, 2013:418.
  6. Smirnov Yu.G., Kondyrev O.V. On the Fredholm property and solvability of a system of integral equations in the conjugation problem for the Helmholtz equation. Differentsial'nye uravneniya = Differential equations. 2023;59(8):1089–1097. (In Russ.). doi: 10.31857/S0374064123080083
  7. Smirnov Yu.G., Tikhov S.V. Propagation of electromagnetic TE and TM waves in a graphene-coated planar waveguide taking into account nonlinearity. Fizika volnovykh protsessov i radiotekhnicheskie sistemy = Physics of wave processes and radio engineering systems. 2023;(4):70‒79. (In Russ.). doi: 10.18469/1810-3189.2023.26.4.70-79
  8. Smirnov Yu.G. On the Fredholm property of a system of integral equations in the problem of electromagnetic wave propagation in a graphene-coated rod. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki = University proceedings. Volga region. Physical and mathematical sciences. 2023;(3):74–86. (In Russ.). doi: 10.21685/2072-3040-2023-3-6
  9. Smirnov Yu.G., Tikhov S.V. On the Ability of TE- and TM-waves Propagation in a Dielectric Layer Covered with Nonlinear Graphene. Lobachevskii Journal of Mathematics. 2023;44(11):390‒403. doi: 10.1134/S1995080223110380
  10. Smirnov Y.G., Smolkin E.Y. On the Existence of an Infinite Spectrum of Damped Leaky TE-Polarized Waves in an Open Inhomogeneous Cylindrical Metal–Dielectric Waveguide Coated with a Graphene Layer. Differential Equations. 2023;59(9):1193– 1198. doi: 10.1134/S0012266123090057
  11. Smolkin E.Y., Smirnov Y.G. Numerical Study of the Spectrum of TE-Polarized Electromagnetic Waves of a Goubau Line Coated with Graphene. Photonics. 2023;10:1297. doi: 10.3390/photonics10121297
  12. Smirnov Yu.G., Smolkin E.G. The Method of Integral Variational Relations in the Problem of Eigenwaves of a Plane Dielectric Layer Coated with Graphene. Lobachevskii Journal of Mathematics. 2023;44(9):4070–4078. doi: 10.1134/S1995080223090408
  13. Smirnov Yu.G., Tikhov S.V. The Nonlinear Eigenvalue Problem of Electromagnetic Wave Propagation in a Dielectric Layer Covered with Graphene. Photonics. 2023;10:523. doi: 10.3390/photonics10050523
  14. Mikhailov S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B. 2016;93(8):085403. doi: 10.1103/PhysRevB.93.085403
  15. Hanson G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. Journal of Applied Physics. 2008;103(6):064302. doi: 10.1063/1.2891452
  16. Korn G., Korn T. Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov) = Handbook of mathematics (for scientists and engineers). Moscow: Nauka, 1977:831. (In Russ.)
  17. Il'inskiy A.S., Smirnov Yu.G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh = Diffraction of electromagnetic waves on conducting thin screens. Moscow: IPRZhR, 1996:176. (In Russ.)
  18. Smirnov Yu.G., Kondyrev O.V. Integro-differential equations in the problem of scattering of electromagnetic waves on a dielectric body covered with graphene. Differentsial'nye uravneniya = Differential equations. 2024;60(9):1089–1097. (In Russ.). doi: 10.31857/S0374064124090053

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).