The Impact of Hierarchical Discourse Features on Coreference Resolution in Russian

Cover Page

Cite item

Full Text

Abstract

This study investigates the role of hierarchical discourse features in coreference resolution within Russian texts. It evaluates the effectiveness of rhetorical parsers in handling coreference across texts of varying genres and lengths. The paper also identifies key characteristics of rhetorical structure annotation corpora that influence the quality of coreference resolution in diverse linguistic contexts.

About the authors

Elena V. Chistova

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Author for correspondence.
Email: chistova@isa.ru

Junior Researcher

Russian Federation, Moscow

References

  1. Voll K., Taboada M. Not all words are created equal: Extracting semantic orientation as a function of adjective relevance // Australasian Joint Conference on Artificial Intelligence. Springer. 2007. P. 337–346.
  2. Hogenboom A. et al. Using rhetorical structure in sentiment analysis // Communications of the ACM. 2015. V. 58. No 7. P. 69–77.
  3. Zirn C. et al. Fine-grained sentiment analysis with structural features // Proceedings of 5th International Joint Conference on Natural Language Processing. 2011. P. 336–344.
  4. Ji Y., Smith N. A. Neural Discourse Structure for Text Categorization // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017. P. 996–1005.
  5. Lee K. et al. A discourse-aware neural network-based text model for document-level text classification // Journal of Information Science. 2018. V. 44. No 6. P. 715–735.
  6. Chistova E., Smirnov I. Discourse-aware text classification for argument mining // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2022. No 2022. P. 93–105.
  7. Dong Y., Mircea A., Cheung J. C. K. Discourse-Aware Unsupervised Summarization for Long Scientific Documents // Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 2021. P. 1089–1102.
  8. Pu D., Demberg V. RST-LoRA: A Discourse-Aware LowRank Adaptation for Long Document Abstractive Summarization // Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Mexico City, Mexico. 2024. P. 2200–2220.
  9. Peldszus A., Stede M. Rhetorical structure and argumentation structure in monologue text // Proceedings of the Third Workshop on Argument Mining (ArgMining2016). 2016. P. 103–112.
  10. Chistova E. End-to-End Argument Mining over Varying Rhetorical Structures // Findings of the Association for Computational Linguistics: ACL 2023. 2023. P. 3376–3391.
  11. Galitsky B., Ilvovsky D., Pisarevskaya D. Argumentation in Text: Discourse Structure Matters // Computational Linguistics and Intelligent Text Processing. 2023. P. 74–86.
  12. Kibrik A. A. Cognitive inferences from discourse observations: reference and working memory // Discourse studies in cognitive linguistics. Proceedings of the 5th International cognitive linguistics conference. 1999. P. 29–52.
  13. Kibrik A. A., Krasavina O. N. A corpus study of referential choice: The role of rhetorical structure // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue” (2005). 2005. P. 561–569.
  14. Kibrik A.A. et al. Referential choice as a multi-factor probabilistic process // Papers from the Annual International Conference “Dialogue”. 2010. P. 173-180.
  15. Kibrik A. A. et al. Referential choice: Predictability and its limits // Frontiers in psychology. 2016. 7. P. 1429.
  16. Khosla S., Fiacco J., Rosé C. Evaluating the Impact of a Hierarchical Discourse Representation on Entity Coreference Resolution Performance // Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. — Online. 2021. P. 1645–1651.
  17. Chistova E., Smirnov I. Light Coreference Resolution for Russian with Hierarchical Discourse Features // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2023. No 22. P. 34–41.
  18. Lee K., He L., Zettlemoyer L. Higher-Order Coreference Resolution with Coarse-to-Fine Inference // Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana. 2018. P. 687–692.
  19. Xu L., Choi J. D. Revealing the Myth of Higher-Order Inference in Coreference Resolution // Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online. 2020. P. 8527–8533.
  20. Ri R., Yamada I., Tsuruoka Y. mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models // Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland. 2022. P. 7316–7330.
  21. Carlson L., D. Marcu, M. E. Okurowski. Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory // Current and New Directions in Discourse and Dialogue. 2003. P. 85-112.
  22. Liu Z., Shi K., Chen N. DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing // Proceedings of the 2nd Workshop on Computational Approaches to Discourse. Punta Cana, Dominican Republic and Online. 2021. P. 154–164.
  23. Chistova E. Bilingual Rhetorical Structure Parsing with Large Parallel Annotations // Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting. 2024. P. 9689–9706.
  24. Chistova E.V. Metody analiza ritoricheskikh struktur v tekstakh na russkom yazyke [Methods for Rhetorical Structure Parsing in Russian ]// Iskusstvennyy intellekt i prinyatie resheniy [Artificial Intelligence and Decision Making] 2024. No 4. P. 79–92.
  25. Budnikov A.E. et al. Ru-Eval-2019: Evaluating Anaphora and Coreference Resolution for Russian // Computational Linguistics and Intellectual Technologies-Supplementary Volume. 2019.
  26. Dobrovolskii V., M. Michurina A. Ivoylova. RuCoCo: a new Russian corpus with coreference annotation // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference “Dialogue”. 2022.
  27. Vilain M. et al. A Model-Theoretic Coreference Scoring Scheme // Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference Held in Columbia, Maryland. 1995.
  28. Bagga A., Baldwin B. Algorithms for scoring coreference chains // The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference. 1998. V. 1. P. 563–566.
  29. Luo X. On Coreference Resolution Performance Metrics // Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Vancouver, British Columbia, Canada. 2005. P. 25–32.
  30. Pradhan S. et al. CoNLL-2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes // Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. Portland, Oregon, USA. 2011. P. 1–27.
  31. Moosavi N. S., Strube M. Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany. 2016. P. 632–642.
  32. Gutnik G. K. Opyt adaptatsii integral'nykh modeley razresheniya koreferentnosti dlya russkogo yazyka [Experiments on Adaptation of End-to-end Coreference Resolution Models For Russian] // Studencheskaya sessiya konferentsii “Dialog” [Student Session of the “Dialogue” Conference]. 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».