An Algorithm for Selecting Linear Regression Features to Solve the Multicollinearity Problem
- Authors: Gribanova E.B.1
-
Affiliations:
- Tomsk state university of control systems and radioelectronics
- Issue: No 1 (2025)
- Pages: 46-55
- Section: Optimal and Rational Choice
- URL: https://journals.rcsi.science/2071-8594/article/view/293491
- DOI: https://doi.org/10.14357/20718594250104
- EDN: https://elibrary.ru/VWJXJQ
- ID: 293491
Cite item
Full Text
Abstract
The paper considers the problem of selecting linear regression factors using an optimization model that includes characteristics of the relationship of features, as well as the dependence of the feature and the effective indicator. To solve it, it is proposed to reformulate the original problem in the form of an inverse while minimizing the sum of the absolute values of the arguments. The results of computational experiments, including comparison with nonlinear programming methods implemented in mathematical packages and the Python library, demonstrated the high efficiency of the proposed algorithm for solving the modified problem.
About the authors
Ekaterina B. Gribanova
Tomsk state university of control systems and radioelectronics
Author for correspondence.
Email: ekaterina.b.gribanova@tusur.ru
Doctor of technical sciences, docent, Associate Professor
Russian Federation, TomskReferences
- Zhao С., Wu M., Liu J., Duan Z., Li J., Shen L., Shangguan X., Liu D., Wang Y. Progress and prospects of data-driven stock price forecasting research // International Journal of Cognitive Computing in Engineering. 2023. V. 4. P. 100–108.
- Chen S., Ke S., Han S., Gupta S., Sivarajah U. Which product description phrases affect sales forecasting? An explainable AI framework by integrating WaveNet neural network models with multiple regression // Decision Support Systems. 2023. 114065.
- Mekanik F., Imteaz M., Gato-Trinidad S., Elmahdi A. Multiple regression and Artificial Neural Network for longterm rainfall forecasting using large scale climate modes // Journal of Hydrology. 2013. V. 503. P. 11–21.
- Busari S., Samson T. Modelling and forecasting new cases of Covid-19 in Nigeria: Comparison of regression, ARIMA and machine learning models // Scientific African. 2022. V. 18. e01404.
- Yarahmadi M., MirHassani S., Hooshmand F. Handling the significance of regression coefficients via optimization // Expert Systems with Applications. 2023. V. 238. No 6.121910.
- Brooks G., Ruengvirayudh P. Best-subset selection criteria for multiple linear regression // General Linear Model Journal. 2016. V. 42. No 2. P. 18-25.
- Tsagris M., Pandis N. Multicollinearity // Statistics and research design. 2021. V. 159. No 5. P. 695–696.
- Kurita T. Principal Component Analysis (PCA) // Computer Vision. 2020. P. 1-4.
- Hamaker H. On multiple regression analysis // Statistica Neerlandica. 1962. V. 16. P. 31–56.
- Efron B., Hastie T., Johnstone J., Tibshirani R. Least Angle Regression // The Annals of Statistics. 2004. V. 32. No 2. P. 407–499.
- Bertsimas D., King A., Mazumder R. Best Subset Selection via a Modern Optimization Lens // Annals of Statistics. 2016. V. 44. No 22. P. 813-852.
- Wang J., Wang, L. A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling // Computers and Industrial Engineering. 2022. V. 168. P. 108-126.
- Garg R., Khandekar R. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property // Proceedings of the 26th Annual International Conference on Machine Learning. 2009. P. 37–344.
- Blumensath T., Davies M. Iterative hard thresholding for compressed sensing // Applied and Computational Harmonic Analysis. 2009. V. 27. No 3. P. 265–274.
- Kapetanios G. Variable selection in regression models using non-stantard optimisation of information criteria // Computational Statistics & Data Analysis. 2006. V. 52. No 1. P. 4-15.
- Rodrigues D., Hugo V., Albuquerque C., Papa J. A multiobjective artificial butterfly optimization approach for feature selection // Applied Soft Computing. 2020. V. 94. 106442.
- Askr H., Abdel-Salam M., Hassanien A. Copula entropybased golden jackal optimization algorithm for high-dimensional feature selection problems // Expert Systems with Applications. 2024. V. 238. 121582.
- Katrutsa A., Strijov V. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria // Expert Systems with Applications. 2017. V. 76. P. 1–11.
- Zhu Z., Zhang W., Geng Z. A feasible SQP method for nonlinear programming // Applied Mathematics and Computation. 2010. V. 215. No 11. P. 3956–3969.
- Beck A., Teboulle M. Mirror descent and nonlinear projected subgradient methods for convex optimization // Operations Research Letters. 2003. V. 31. No 3. P. 167–175.
- Storn R., Price K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces // Journal of Global Optimization. 1997. V. 11. P. 341–359.
- Gribanova E.B. Stohasticheskie algoritmy reshenija obratnyh zadach jekonomicheskogo analiza s ogranichenijami [Stochastic algorithms to solve the economic analysis inverse problems with constraints] // Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki [Proceedings of TUSUR University]. 2016. No 4. P. 112–116.
- Gribanova E.B. Metody reshenija obratnyh zadach jekonomicheskogo analiza s pomoshh'ju minimizacii prirashhenij argumentov [Methods for solving inverse problems of economic analysis by minimizing argument increments] // Doklady Tomskogo gosudarstvennogo universiteta sistem upravlenija i radiojelektroniki [Proceedings of TUSUR University]. 2018. No 2. P. 95–99.
- Gribanova E.B. Development of iterative algorithms for solving the inverse problem using inverse calculations // Eastern-European Journal of Enterprise Technologies. 2020. No 4 (3). P. 27–34.
- Gribanova E.B. An Iterative Algorithm for Solving Inverse Problems of Economic Analysis Using Weighting Factors. Advances in Engineering Research. New York: Nova Publishers, 2021. P. 49–79.
- Ahuja R.K., Orlin J.B. Inverse Optimization, Part1: Linear Programming and General Problem. Cambridge: MIT, 1998.
- Gribanova E. Elaboration of an Algorithm for Solving Hierarchical Inverse Problems in Applied Economics // Mathematics. 2022. V. 10. 2779.
- Gribanova E.B. Algorithm for solving the inverse problems of economic analysis in the presence of limitations // EUREKA: Physics and Engineering. 2020. No 1. Р. 70–78.
Supplementary files
