Motion Classification by Artificial Neural Network for Bionic Hand Control

Cover Page

Cite item

Full Text

Abstract

The results of training and testing of an artificial neural network for recognizing human finger movements based on signals from electromyographic sensors are presented. Special attention is paid to the issues of preliminary processing of initial signals, including digital filtering, setting the optimal level corresponding to the resting state of the muscle, and calculation of signal attributes. In the paper, an envelope of the electromyographic signal was built on the basis of the “average energy” attribute, and the definition of muscle activity areas was carried out using two thresholds: adaptive in level and fixed in time. Three attributes are used directly for training the artificial neural network, which are specified depending on the requirements to the quality of training, either by indicator of distinguishability or by a complete enumeration of combinations of attributes. Optimization of the set of attributes for training the artificial neural network allowed achieving the level of correct answers more than 97%.

About the authors

Vyacheslav F. Bez'yazichny

P. A. Solovyov Rybinsk State Aviation Technical University

Author for correspondence.
Email: technology@rsatu.ru

Doctor of Technical Sciences, Professor of the Department "Innovative mechanical engineering", chief researcher of Engineering Center "Digital Machine Building"

Russian Federation, Rybinsk

Aleksey V. Yudin

P. A. Solovyov Rybinsk State Aviation Technical University

Email: judinav@mail.ru

Doctor of technical sciences, docent, Head of Electrical Engineering and Industrial Electronics Department, chief researcher of Engineering Center "Digital Machine Building"

Russian Federation, Rybinsk

Maxim V. Pankratov

P. A. Solovyov Rybinsk State Aviation Technical University; «BioTech» LLC

Email: pankratov_m_v@mail.ru

Leading researcher of Engineering Center "Digital Machine Building", Leading researcher

Russian Federation, Rybinsk; Rybinsk

Evgeny A. Eliseichev

P. A. Solovyov Rybinsk State Aviation Technical University; «BioTech» LLC

Email: EvgenijEliseichev@yandex.ru

Associate Professor of Electrical Engineering and Industrial Electronics Department, leading researcher of Engineering Center "Digital Machine Building", Director

Russian Federation, Rybinsk; Rybinsk

Pavel S. Vorobyev

P. A. Solovyov Rybinsk State Aviation Technical University; «BioTech» LLC

Email: vorobps@gmail.com

Junior researcher of Engineering Center "Digital Machine Building", Junior researcher

Russian Federation, Rybinsk; Rybinsk

Ilya S. Blinov

P. A. Solovyov Rybinsk State Aviation Technical University; «BioTech» LLC

Email: ilya.blinov.1998@mail.ru

Junior researcher of Engineering Center "Digital Machine Building", Junior researcher

Russian Federation, Rybinsk; Rybinsk

References

  1. Bez'yazichny V.F., Eliseichev Е.А., Vorobyev P.S., Mikhailov V.V., Tyaptin A.A. Obzor sposobov schityvaniya EMG-signalov v oblasti predplech'ya dlya upravleniya bionicheskimi protezami verhnih konechnostej [Review of methods of EMG-signals reading in the forearm area for controlling bionic upper limb prostheses] // Biomedicinskaya radioelektronika [Biomedical Radioelectronics]. 2023. No 1. P. 35-44.
  2. Carvalho C.R., Fernández J.M., del-Ama A.J., Oliveira Barroso F., Moreno J.C. Review of electromyography onset detection methods for real-time control of robotic exoskeletons // Journal of NeuroEngineering and Rehabilitation. 2023. V. 20. No 1. P. 141-156.
  3. Noce E., Dellacasa Bellingegni A., Ciancio A.L,, Sacchetti R., Davalli A., Guglielmelli E., Zollo L. EMG and ENGenvelope pattern recognition for prosthetic hand control // Journal of Neuroscience Methods. 2018. V. 311. P. 38-46.
  4. Solnik S., Rider P., Steinweg K., DeVita P., Hortobagyi T. Teager–Kaiser energy operator signal conditioning improves EMG onset detection // European journal of applied physiology. 2010. V. 110. No 3. P. 489-498.
  5. Yang D., Huang Q., Yang W., Liu H. EMG Onset Detection Based on Teager–Kaiser Energy Operator and Morphological Close Operation // International Conference on Intelligent Robotics and Applications (ICIRA). 2015. V. 8103. P. 257-268.
  6. Ozgunen K., Umut C., Kurdak S. Determination of an Optimal Threshold Value for Muscle Activity Detection in EMG Analysis // Journal of sports science & medicine. 2010. V. 9. No 4. P. 620-628.
  7. Qizhu S., Yining S., Xiangfeng D., Zuchang M. Onset determination of muscle contraction in surface electromyography signals analysis // IEEE International Conference on Information Acquisition. 2005. P. 3957–3962.
  8. Perez A.C. Design strategies for detecting action potentials in actions based on movements. Madrid: Universidad Politecnica de Madrid, 2018.
  9. Morantes G., Fernandez G., Altuve M. A Threshold-Based Approach for Muscle Contraction Detection From Surface EMG Signals // IX International Seminar on Medical Information Processing and Analysis. 2013. V. 8922.
  10. Jubany J., Angulo-Barroso R. An algorithm for detecting EMG onset/offset in trunk muscles during a reactionstabilization test // Journal of back and musculoskeletal rehabilitation. 2015. V. 29. No 2. P. 219-230.
  11. De Marchis C., Schmid M., Conforto S. An optimized method for tremor detection and temporal tracking through repeated second order moment calculations on the surface EMG signal // Medical engineering & physics. 2012. V. 34. No 9. P. 1268-1277.
  12. Uthvag S., Sai P.V., Kumar S.D., Muthusamy H., Chanu O.R., Raj V.K. REAL-TIME EMG ACQUISITION AND FEATURE EXTRACTION FOR REHABILITATION AND PROSTHESIS // Biomedical Engineering: Applications, Basis and Communications. 2019. V. 31. No 5. P. 1950037.
  13. Zhang X., Wang X., Wang B., Sugi T., Nakamura M. Automatic adaptive onset detection using an electromyogram with individual difference for control of a meal assistance robot // Journal of medical engineering & technology. 2009. V. 33. No 4. P. 322-327.
  14. Xu Q., Quan Y., Yang L., He J. An Adaptive Algorithm for the Determination of the Onset and Offset of Muscle Contraction by EMG Signal Processing // IEEE transactions on neural systems and rehabilitation engineering. 2013. V. 21. No 1. P. 65-73.
  15. Unanyan N.N., Belov A.A. Design of upper limb prosthesis using real-time motion detection method based on EMG signal processing // Biomedical Signal Processing and Control. 2021. V 70. P 1-11.
  16. Naseer N., Ali F., Ahmed S., Iftikhar S., Khan R., Gilani S.H. EMG Based Control of Individual Fingers of Robotic Hand // International Conference on Sustainable Information Engineering and Technology (SIET). 2018. P. 6-9.
  17. Phinyomark A. Quaine F. Charbonnier S., Serviere C., Tarpin-Bernard F., Laurillau Y. EMG Feature Evaluation for Improving Myoelectric Pattern Recognition Robustness // Expert Systems with Applications. 2013. V. 40. No 12. P. 4832-4840.
  18. Zhang Z., Yu X., Qian J. Classification of Finger Movements for Prosthesis Control with Surface Electromyography // Sensors and Materials. 2020. V. 32. No 4. P. 1523-1532.
  19. Abbaspour S., Lindén M., Gholamhosseini H., Naber A., Ortiz-Catalan M. Evaluation of surface EMG-based recognition algorithms for decoding hand movements // Medical & Biological Engineering & Computing. 2019. V. 58. No 8. P. 83-100.
  20. Phinyomark A., Khushaba R., Scheme E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors // Sensors. 2018. V. 18. No 5. P. 1615-1631.
  21. Bhagwat S., Mukherji P. Electromyogram (EMG) based fingers movement recognition using sparse filtering of wavelet packet coefficients // Sādhanā. 2020. V. 45. No 1. P. 1-11.
  22. Mahmood N., Al Muifraje M., Saeed T., Kaittan, A. Upper Prosthetic Design based on EMG: A Systematic Review // IOP Conference Series: Materials Science and Engineering. 2020. V. 978. No 1. P. 012025.
  23. Phinyomark A., Phukpattaranont P., Limsakul C. Feature Reduction and Selection for EMG Signal Classification // Expert Systems with Applications. 2012. V. 39. No 8. P. 7420-7431.
  24. Bez'yazichny V.F., Eliseichev Е.А., Blinov I.S., Mikhailov V.V., Tyaptin A.A. Opredelenie optimal'nogo nabora skhvatov dlya protezov predplech'ya s bioelektricheskim upravleniem [Determination of the optimal set of grips for bioelectrically controlled forearm prostheses] // Fizicheskaya i reabilitacionnaya medicina [Physical and rehabilitation medicine]. 2023. V.5. No 3. P. 59-65.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».