Pareto Set Reduction Based on Information about a Type-2 Fuzzy Preference Relation. Algorithm Description

Cover Page

Cite item

Full Text

Abstract

A multicriteria choice problem is considered in a case when preferences of a decision maker are expressed with a type-2 fuzzy binary relation. An algorithm for Pareto set reduction based on fuzzy quanta of information about preferences of the decision maker is presented. An example of its application is also discussed.

About the authors

Oleg V. Baskov

Saint Petersburg State University

Author for correspondence.
Email: o.baskov@spbu.ru

Candidate of Physical and Mathematical Sciences, Associate Professor

Russian Federation, Saint Petersburg

References

  1. Miettinen K. 1999. Nonlinear Multiobjective Optimization. Kluwer: 300 p.
  2. Figueira J., Greco S., Ehrgott M. 2005. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer: 1085 p.
  3. Noghin V. D. 2002. A Logical Justification of the Edgeworth – Pareto Principle. Computational Mathematics and Mathematical Physics. 42(7):915–920.
  4. Noghin V. D. 2018. Reduction of the Pareto set: an axiomatic approach. Springer, 232 p.
  5. Zadeh L. A. 1965. Fuzzy sets. Information and Control. 8(3):199–249.
  6. Chen T. Y. 2015. An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach. Information Fusion. 25:105–120.
  7. Dymova L., Sevastjanov P., Tikhonenko A. 2015. An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts. Knowledge-Based Systems. 83:116–127.
  8. Qin J., Liu X. 2019. Type-2 Fuzzy Decision-Making Theories, Methodologies and Applications. Springer: 271 p.
  9. Shukla A. K., Muhuri P. K. 2019. General type-2 fuzzy decision making and its application to travel time selection. Journal of Intelligent and Fuzzy Systems 36:5227–5244.
  10. Bede B. 2013. Mathematics of Fuzzy Sets and Fuzzy Logic. Springer: 281 p.
  11. Noghin V. D., Baskov O. V. 2021. Type-2 fuzzy sets and their application in decision-making summary. General concepts. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision-making] 1:3–14.
  12. Zadeh L. A. 1975. The concept of a linguistic variable and its application to approximate reasoning. Information Sciences. 8(3):199–249.
  13. Karnik N. N., Mendel J. M. 2002. Operations on type-2 fuzzy sets. Fuzzy Sets and Systems. 122:327–348.
  14. Hu B. Q., Wang C. Y. 2014. On type-2 fuzzy relations and interval-valued type-2 fuzzy sets. Fuzzy Sets and Systems. 236:1–32.
  15. Mitsumoto M., Tanaka K. 1976. Some Properties of Fuzzy Sets of Type 2. Information and Control. 31:312–340.
  16. Mendel J. M., John R. 2002. Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems. 10(2):117–127.
  17. Zhang W. R. 1986. Knowledge representation using linguistic fuzzy relations. PhD Diss., University of South Carolina.
  18. Baskov O. V., Noghin V. D. 2021. The Edgeworth – Pareto principle in the case of IT2F preference relation. Journal of Physics: Conference Series. 1801:1–5.
  19. Baskov O. V. Consistency of information about type-2 fuzzy preference relation (unpubl.)
  20. Baskov O. V. 2022. Pareto set reduction based on information about a type-2 fuzzy preference relation. Iskusstvennyi intellekt i prinyatie reshenii [Artificial intelligence and decision-making] (in press).

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).