Modified Sine-Cosine Metaheuristic Аlgorithm for Multidimensional Global Optimization Problems

Cover Page

Cite item

Full Text

Abstract

The computational model of the sine-cosine metaheuristic algorithm is investigated. A modified algorithm is proposed that includes computational mechanisms to maintain a balance between the convergence rate of the algorithm and the diversification of the solution search space. The effectiveness of the algorithm is analyzed using a series of experiments for the tasks of finding a global minimum in a set of multidimensional test functions. The statistical significance of the obtained results is checked. 

Full Text

Restricted Access

About the authors

Sergey I. Rodzin

Southern Federal University

Author for correspondence.
Email: srodzin@sfedu.ru

Candidate of technical sciences, docent. Professor at the Institute of Computer Technology and Information Security

Russian Federation, Taganrog

References

  1. Kurejchik V.V., Rodzin S.I. Vychislitel'nye modeli evolyucionnyh i roevyh bioevristik (obzor) [Computational models of evolutionary and swarm bioheuristics (review)]. Informacionnye tekhnologii [Information technology]. 2021. V. 27. No 10. P. 507–520.
  2. Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems // Knowl. based syst. 2016. V. 96. P. 120–133.
  3. Huang F., Li X., Zhang S. Harmonious genetic clustering // IEEE trans. on cybernetics. 2018. V. 48. P. 199–214.
  4. Kaveh A., Talatahari S. An improved ant colony optimization for constrained engineering design problems // Eng. computation. 2010. V. 27. P. 155–182.
  5. Rodzin S., Rodzina L. Hyper-heuristics: method of differential evolution and bat method for selecting classification features // Lecture notes in networks&systems (LNNS). 2021. V. 229. P. 545-556.
  6. Gandomi A., Yang X., Alavi A. Cuckoo search algorithm: a meta-heuristic approach to solve structural optimization problems // Eng. appl. of artificial intelligence. 2013. V. 29. P. 17–35.
  7. Mezura-Montes E., Coello C. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems // Int. jour. of general systems. 2008. V. 37. P. 443–473.
  8. Coello C., Montes E. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection // Advanced eng. informatics. 2002. V. 16. P. 193–203.
  9. Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm // Knowledge-based Systems. 2015. V. 89. P. 228–249.
  10. Mirjalili S., Lewis A. The whale optimization algorithm // Adv. Eng. Soft. 2016. V. 95. P. 51–67.
  11. Fu W., et. al. A hybrid fault diagnosis approach for rotating machinery with the fusion of entropy-based feature extraction and SVM optimized by a chaos quantum sine cosine algorithm // Entropy. 2018. V. 20(9). P. 626.
  12. Hafez A., Zawbaa H., Emary E., Hassanien A. Sine cosine optimization algorithm for feature selection // IEEE int. symp. on innovations in intelligent systems and appl. 2016. P. 1–5.
  13. Gholizadeh S., Sojoudizadeh R. Modified sine-cosine algorithm for sizing optimization of truss structures with discrete design variables // Iran Univ. Sci. Technol. 2019. V. 9(2). P. 195–212.
  14. Abualigah L., Diabat A. Advances in sine cosine algorithm: a comprehensive survey // Artificial Intelligence Review. 2021. V. 54. P. 2567–2608.
  15. Tawhid M., Savsani V. Multi-objective sine-cosine algorithm (MOSCA) for multi-objective engineering design problems // Neural Comput. Appl. 2019. V. 31(2). P. 915–929.
  16. Wolpert D., Macready W. No free lunch theorems for optimization // IEEE trans. evol. comput. 1997. No 1. P. 67–82.
  17. Qu C., et. al. A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy Mutation // Comput. Intell. Neurosci. 2018. P. 1 – 19.
  18. Long W., et. al. Solving high-dimensional global optimization problems using an improved sine cosine algorithm // Expert systems with applications. 2019. V. 123. P. 108-126.
  19. Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm // Appl. Soft. Comput. 2008. No 8(1). P. 687–697.
  20. Shi Y., Eberhart R. A modified particle swarm optimizer // IEEE int. conf. on evolutionary computation. 1998. No 1. P. 69–73.
  21. Storn R., Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces // Glob. Optim. 1997. No 11(4). P. 341–359.
  22. Abdollahzadeha B., Gharehchopogha F., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems // Comp.&Industrial Eng. 2021. V. 158. P. 107408.
  23. Rodzin S.I., Skobtsov Y.A., El-Khatib S.A. Bioevristiki: teoriya, algoritmy i prilozheniya [Bioheuristics: theory, algorithms and applications]. Cheboksary: Izdatel'skij Dom «Sreda» [Cheboksary: Publishing House "Sreda"]. 2019. 224 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tension/compression spring [22]

Download (25KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).