On the Relationship between the Knowledge Model and the Problem of Pattern Recognition

Capa

Citar

Texto integral

Resumo

The article is devoted to the problem of pattern decomposition in solving the problem of pattern recognition. The problem of pattern decomposition is considered regardless of the recognition algorithms used. The only requirement is that the pattern recognition problem has a classical formulation. The article shows that without reference to the knowledge model, the decomposition of pattern cannot be performed within the framework of the recognition task itself, since it leads to a revision of the recognition task itself. In those cases, when the pattern recognition problem is preserved during decomposition, it may change in such a way that its solution in the decomposed form is not identical to the solution of the original pattern recognition problem.

Texto integral

Acesso é fechado

Sobre autores

Oleg Polyakov

Saint-Petersburg State University of Aerospace Instrumentation

Autor responsável pela correspondência
Email: road.dust.spb@gmail.com

Candidate of technical sciences. Docent

Rússia, Saint-Petersburg

Sergey Rudnitskiy

Saint-Petersburg State University of Aerospace Instrumentation

Email: sbr@spiiras.ru

Doctor of Technical Sciences, Professor. Senior Researcher

Rússia, Saint-Petersburg

Bibliografia

  1. The RapidMiner Platform // Electronic resource. URL: https://rapidminer.com/ (accessed 04.07.2023).
  2. Fomin Ya. A., Tarlovsky G.R. Statisticheskaya teoriya raspoznavaniya obrazov [Statistical theory of pattern recognition]. Moscow: Radio and Communication, 1986.
  3. Potapov A. A., Pakhomov A.A., S. Nikitin.A. Noveyshiye metody obrabotki izobrazheniy [The latest methods of image processing]. Moscow: Fizmatlit, 2008.
  4. Shapiro L., Stockman J. Komp'yuternoye zreniye. [Computer vision]. Moscow: Binom. Laboratory of Knowledge, 2006.
  5. Merkov A. B. Raspoznavaniye obrazov. Vvedeniye v metody statisticheskogo obucheniya [Pattern recognition. Introduction to methods of statistical training]. Moscow: Editorial URSS, 2011.
  6. Nicolas J. First Order Logic Formalization for Functional, Multivalued and Mutual Dependencies. ACM SIGMOD Conf, 1978. P. 40-46.
  7. Rissanen J. Independent Components of Relations. ACM TODS 2:4, December, 1977. P. 317-325.
  8. Fagin R. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM TODS 2:3, September. 1977. P. 262-278.
  9. R-lingvistika [R-linguistics]. // Electronic resource. URL: https://roaddust.ru/?cat=36 / (accessed 22.04.2023).
  10. Polyakov O.М. Linguistic data model for natural languages and artificial intelligence. Part 1. Categorization // DISCOURSE. 2019. V. 5. No 4. P.102–114.
  11. Polyakov O. M. Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 2. Identification. DISCOURSE. 2019. V. 5.No. 5. P. 99-113.
  12. Polyakov O. M. Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 3. Recognition. DISCOURSE. 2019. V. 5. No. 6. P. 132-143.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Training sample

Baixar (20KB)
3. Fig. 2. Two-parameter training sample

Baixar (2KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).