Artificial Intelligence for Cyber Security: a New Stage of Confrontation in Cyberspace

Cover Page

Cite item

Full Text

Abstract

Artificial intelligence (AI) has become one of the most disruptive approaches to processing huge volumes of heterogeneous data and performing fundamental cyber security tasks such as intrusion detection, vulnerability management, security monitoring, asset prioritization, access control. The article presents the current state of the use of AI methods (primarily machine learning methods) in cyber security. Key areas of focus at the intersection of AI and cyber security are analyzed. The article partially reflects the content of the plenary report given at the XX National Conference on Artificial Intelligence with International Participation (NCAI-2022).

Full Text

Restricted Access

About the authors

Igor V. Kotenko

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: ivkote@comsec.spb.ru

Doctor of Technical Sciences, Professor. Honored Scientist of the Russian Federation. Chief Scientist, Head of Laboratory of Computer Security Problems

Russian Federation, St. Petersburg

References

  1. The Next Paradigm Shift AI-Driven Cyber-Attacks. DarkTrace Research White Paper. 2021.https://www.oixio.ee/sites/default/files/the_next_para-digm_shift_ai_driven_cyber_attacks.pdf (date of access: 10.11.2023).
  2. Namiot D.E., Ilyushin E.A., Chizhov I.V. Iskusstvennyj intellekt i kiberbezopasnost' [Artificial Intelligence and Cybersecurity] // International Journal of Open Information Technologies. 2022. V. 10. No 9. P. 135-147.
  3. Gaifulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniya v zadachah kiberbezopasnosti. Chast' 1 [Application of deep learning methods in cybersecurity problems. Part 1] // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2020. No 3 (37). P. 76-86. doi: 10.21681/2311-3456-2020-03-76-86.
  4. Gaifulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniya v zadachah kiberbezopasnosti. Chast' 2 [Application of deep learning methods in cybersecurity problems. Part 2] // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2020. No 4 (38). P. 11-21. doi: 10.21681/2311-3456-2020-04-11-21.
  5. Thanh C., I. Zelinka. A survey on artificial intelligence in malware as next-generation threats // MENDEL. 2019. V. 25. No 2. P. 27–34. doi: 10.13164/mendel.2019.2.027.
  6. Raimundo R., Rosário A. Cybersecurity in the IoTs in Industrial Management // Applied Sciences. 2022. V. 12. No 3. 1598.
  7. Guembe B., Azeta A., Misra S., Osamor V.C., Fernandez-Sanz L., Pospelova V. The Emerging Threat of AI-driven Cyber Attacks: A Review // Applied Artificial Intelligence. 2022. V. 36. Issue 1. doi: 10.1080/08839514.2022.2037254.
  8. Mirsky Y., Demontis A., Kotak J., Shankar R., Gelei D., Yang L., Zhang X., Pintor M., Lee W., Elovici Y., Biggio B. The threat of offensive AI to organizations // Computers & Security. V. 124. 2023. 103006. doi: 10.1016/j.cose.2022.103006.
  9. Salim D.T., Singh M.M., Keikhosrokiani P. A systematic literature review for APT detection and Effective Cyber Situational Awareness (ECSA) conceptual mode // Heliyon. 2023. V. 9. Issue 7. E17156. doi: 10.1016/j.heliyon.2023.e17156.
  10. Kaur R., Gabrijelcic D., Klobucar T. Artificial intelligence for cybersecurity: Literature review and future research directions // Information Fusion. 2023. V. 97. 101804. doi: 10.1016/j.inffus.2023.101804.
  11. Saied M., Guirguis S., Madbouly M. Review of artificial intelligence for enhancing intrusion detection in the internet of things // Engineering Applications of Artificial Intelligence. 2024. V. 127. 107231. doi: 10.1016/j.en-gappai.2023.107231.
  12. Levshun, D., Kotenko, I. A survey on artificial intelligence techniques for security event correlation: models, challenges, and opportunities // Artificial Intelligence Review. V. 56. No 8. 2023. P. 8547–8590. doi: 10.1007/s10462-022-10381-4.
  13. Igor Kotenko, Diana Gaifulina, Igor Zelichenok. Systematic Literature Review of Security Event Correlation Methods // IEEE Access. 2022. V.10. P. 43387-43420. doi: 10.1109/ACCESS.2022.3168976.
  14. Kotenko I.V., Levshun D.A. Metody intellektual'nogo analiza sistemnyh sobytij dlya obnaruzheniya mnogoshagovyh kiberatak: ispol'zovanie baz znanij. [Methods of intelligent system event analysis for multistep cyber-attack detection: using knowledge bases] // Iskusstvennyj intellekt i prinyatie reshenij [Scientific and Technical Information Processing]. 2023. No 2. P. 3-14. doi: 10.14357/20718594230201.
  15. Kotenko I.V., Levshun D.A. Metody intellektual'nogo analiza sistemnyh sobytij dlya obnaruzheniya mnogoshagovyh kiberatak: ispol'zovanie metodov mashinnogo obucheniya. [Methods of intelligent system event analysis for multistep cyber-attack detection: use of machine learning methods] // Iskusstvennyj intellekt i prinyatie reshenij [Scientific and Technical Information Processing]. 2023. No 3. P. 3-16. doi: 10.14357/20718594230301.
  16. Almiani M., Abughazleh A., Al-Rahayfeh A., Atiewi S., Razaque A. Deep recurrent neural network for IoT intrusion detection system // Simulation Modelling Practice and Theory. 2020. V. 101. 102031. doi: 10.1016/j.simpat.2019.102031.
  17. Naveed K., Wu H., Abusaq A. Dytokinesis: a cytokinesisinspired anomaly detection technique for IoT devices // IEEE 45th Conference on Local Computer Networks. 2020. P. 373–376. doi: 10.1109/LCN48667.2020.9314856.
  18. What’s New in Artificial Intelligence from the 2022 Gartner Hype Cycle. Gartner. 2022. https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligencefrom-the-2022-gartner-hype-cycle (date of access 10.11.2023).
  19. What’s New in Artificial Intelligence from the 2023 Gartner Hype Cycle. Gartner. 2023. https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligencefrom-the-2023-gartner-hype-cycle (date of access 10.11.2023).
  20. Kaloudi N., Li J. The AI-based cyber threat landscape // ACM Computing Surveys. 2020. V. 53. No 1. P. 1–34. doi: 10.1145/3372823.
  21. Dixon W., Eagan N. 3 ways AI will change the nature of cyber attacks. 2019. https://www.weforum.org/agenda/2019/06/ai- is-powering-a-new-generation-of-cyberattack-its-also-ourbest-defence/ (date of access 10.11.2023).
  22. Fischer E. Cybersecurity issues and challenges: In brief // CRS Report. R43831. Prepared for Members and Committees of Congress. 2016. https://sgp.fas.org/crs/misc/R43831.pdf (date of access 10.11.2023).
  23. Kirat D., Jang J., Stoecklin M.Ph. DeepLocker. Concealing Targeted Attacks with AI Locksmithing. IBM Research. Blackhat USA. 2018. https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf (date of access 10.11.2023).
  24. Shruti M. 10 Types of Cyber Attacks You Should Be Aware in 2023. 2023. https://www.simplilearn.com/tutori- als/cyber-security-tutorial/types-of-cyber-attacks (date of access 10.11.2023).
  25. Horvitz E. Applications for artificial intelligence in Department of Defense cyber missions. Microsoft. 2022. https://blogs.microsoft.com/on-the-issues/2022/05/03/artificial-intelligence-department-of-defense-cyber-missions/ (date of access 10.11.2023).
  26. Gaifulina D.A., Kotenko I.V. Analiz modelej glubokogo obucheniya dlya zadach obnaruzheniya setevyh anomalij Interneta veshchej [Analysis of deep learning models for network anomaly detection in Internet of Things] // Informacionno-upravlyayushchie sistemy [Information and Control Systems]. 2021. No 1. P. 28-37. doi: 10.31799/1684-8853-2021-1-28-37.
  27. Kotenko I.V., Saenko I.B., Doynikova E.V., Novikova E.S., Sharov A.V., Chechulin A.A., Desnitsky V.A. Intellektual'nye servisy zashchity informacii v kriticheskih infrastrukturah [Intelligent information security services in critical infrastructures]. St. Petersburg: BHV-Petersburg, 2019. 400 p.
  28. Doynikova E.V., Kotenko I.V. Ocenivanie zashchishchennosti i vybor kontrmer dlya upravleniya kiberbezopasnost'yu. Monografiya [Security assessment and selection of countermeasures for cybersecurity management. Monograph]. St. Petersburg: Publishing house "Science", 2021. 197 p.
  29. Kotenko I., Konovalov A., Shorov A. Agent-based simulation of cooperative defence against botnets // Concurrency Computation Practice and Experience. 2012. V. 24. No 6. P. 573-588. doi: 10.1002/CPE.1858.
  30. Komashinskiy D., Kotenko I. Malware detection by data mining techniques based on positionally dependent features // Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2010). 2010. P. 617-623. doi: 10.1109/PDP.2010.30.
  31. Atighetchi M., Pal P., Webber F., Jones C. Adaptive use of network-centric mechanisms in cyber-defense // Sixth IEEE International Symposium on Object-Oriented RealTime Distributed Computing, 2003. P. 183-192.
  32. Atighetchi M., Pal P., Webber F., Schantz R., Jones C., Loyall J. Adaptive cyberdefense for survival and intrusion tolerance. // IEEE Internet Computing. 2004. V. 8. Issue 6. P. 25-33.
  33. Petkac M., Badger L. Security agility in response to intrusion detection. ACSAC '00. 16th Annual Conference on Computer Security Applications, 2000. IEEE Xplore. 2001. doi: 10.1109/ACSAC.2000.898853.
  34. How the Economy, Skills Gap and Artificial Intelligence are Challenging the Global Cybersecurity Workforce 2023. Cybersecurity Workforce Study. 2023. https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce _Study_2023.pdf (date of access 10.11.2023).
  35. Kouliaridis V., Kambourakis G. A comprehensive survey on machine learning techniques for android malware detection // Information. 2021. V. 12. No 5. 185. doi: 10.3390/info12050185.
  36. Macas M., Wua C., Fuertes W. A survey on deep learning for cybersecurity: Progress, challenges, and opportunities // Computer Networks. 2022. V. 212. 109032. doi: 10.1016/j.comnet.2022.109032.
  37. Samtani S., Kantarcioglu M., Che H. Trailblazing the AI for Cybersecurity Discipline // ACM Transactions on Management Information Systems. 2020. V. 11. Issue 4. Article No 17. P. 1–19. https://doi.org/10.1145/3430360.
  38. Strom B.E., Applebaum A., Miller D.P., Nickels K.C., Pennington A.G., Thomas Cody B. MITRE ATT&CK: Design and Philosophy. Project No.: 10AOH08A-JC. The MITRE Corporation. 2020. https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2 020.pdf (date of access 10.11.2023).
  39. Kotenko I.V., Khmyrov S.S. Analiz modelej i metodik, ispol'zuemyh dlya atribucii narushitelej kiberbezopasnosti pri realizacii celevyh atak [Analysis of models and techniques used for attribution of cybersecurity violators in the implementation of targeted attacks] // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2022. No 4. V. 50. P.52-79. doi: 10.21681/2311-3456-2022-4-52-79.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. AI Keyword Network

Download (317KB)
3. Fig. 2. Keyword occurrence cloud in article headings

Download (233KB)
4. Figure 3. Word cloud for the data sets used

Download (411KB)
5. Fig. 4. Theoretical performance of the self-regenerative system

Download (144KB)
6. Fig. 5. The number of works and examples of basic machine learning methods used to search for malicious applications

Download (72KB)
7. Figure 6. Using deep learning models

Download (86KB)
8. Fig. 7. Distribution of intrusion detection activities in Internet of Things networks

Download (193KB)
9. Figure 8. Using machine learning for cyber attacks

Download (602KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».