Multicriteria Choice Based on Interval Fuzzy Information
- Authors: Nogin V.D.1
-
Affiliations:
- Saint Petersburg State University
- Issue: No 4 (2023)
- Pages: 82-93
- Section: Optimal and Rational Choice
- URL: https://journals.rcsi.science/2071-8594/article/view/269749
- DOI: https://doi.org/10.14357/20718594230408
- EDN: https://elibrary.ru/NUAURI
- ID: 269749
Cite item
Full Text
Abstract
We consider a class of multicriteria choice problems in which the preferences of the decision maker are modeled by an interval type-2 fuzzy relation. The basic axioms of ‘reasonable’ choice are formulated. They, in particular, allow us to establish the Edgeworth-Pareto principle for this class of problems. The concept of a quantum of interval fuzzy information is introduced, as well as a consistent set of similar quanta. A criterion for the consistency of a set of quanta is formulated and a scheme for using quanta of interval fuzzy information to reduce the Pareto set is presented. An example is given to illustrate the proposed approach.
About the authors
Vladimir D. Nogin
Saint Petersburg State University
Author for correspondence.
Email: noghin@gmail.com
Doctor of Physical and Mathematical Sciences, Professor of the Department of Control Theory, Full Member of the International Academy of Sciences of Higher Education
Russian Federation, Saint PetersburgReferences
- Noghin V.D. Reduction of the Pareto set. An axiomatic approach. Springer AG. 2018.
- Karnik N.N., Mendel J.M. and Liang Q. Type-2 fuzzy logic systems // IEEE Transaction Fuzzy Systems. 1999. V. 7. No 6. P. 643–658.
- Mendel J.M. Advances in type-2 fuzzy sets and systems // Information Sciences. 2007. V. 177. P. 84‒110.
- Mendel J.M., Liu X. Type-2 fuzzy sets and systems: a retrospective // IEEE Transaction Fuzzy Systems. 2015. V. 1. No 6. P. 1056‒1069.
- Baskov O.V., Noghin V.D. Type-2 fuzzy sets and their application in decision-making: general concepts // Scientific and Technical Information Processing. 2022. V. 49. P. 283–291.
- Bustince H. et al. A historical account of types of fuzzy sets and their relationships // IEEE Transactions on Fuzzy Systems. 2016. V. 24, No 1. P. 179‒194.
- Liang Q., Mendel J.M. Interval type-2 fuzzy logic systems: theory and design // IEEE Transaction Fuzzy Systems. 2000. V. 8. No 5. P. 535–550.
- Bustince H. et al. A survey of interval-valued fuzzy sets. 2008. Handbook of Granular Computing. P. 489-515.
- Bustince H. Interval-valued fuzzy sets in soft computing // International Journal of Computational Intelligence Systems. 2010. V. 3. No 2. P. 215‒222.
- Huidobro P., Alonso P., Janiš V. et al. Convexity and level sets for interval-valued fuzzy sets // Fuzzy Optimization and Decision Making. 2022. P. 553–580.
- Runkler T., Coupland S., John R. Interval type-2 fuzzy decision making // International Journal of Approximate Reasoning, 2017. V. 80. P. 217-224.
- Bustince H. et al. A Survey of applications of the extensions of fuzzy sets to image processing. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence. 2009. V. 256. Springer.
- Baskov O.V., Noghin V.D. The Edgeworth-Pareto principle in the case of IT2F preference relation // Journal of Physics Conference Series. 2021.
- Baskov O.V. Consistency of information about type-2 fuzzy preference relation // International Journal of Information Technology and Decision Making. 2022. P. 1‒15.
- Baskov O.V. Suzhenie mnozhestva Pareto na osnove informacii o nechetkom otnoshenii predpochteniya vtorogo poryadka. Opisanie algoritma [Reduction of the Pareto set based on information about the type-2 fuzzy preference relation. Description of the algorithm] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial Intelligence and Decision Making]. 2022. No 3. P. 63‒71.
- Noghin V.D. Multicriteria choice on a fuzzy set as a problem of searching for compromise // Scientific and Technical Information Processing. 2019. V. 46. P. 397–403.
- Noghin V.D. Algoritm suzheniya mnozhestva Pareto pri pomoshchi nabora kvantov nechetkoj informacii [Algorithm for Reduction of the Pareto Set Using a Collection of Fuzzy Information Quanta] // Iskusstvennyj intellekt i prinyatie reshenij. [Artificial Intelligence and Decision Making]. 2022. No 4. С. 95‒104.
Supplementary files
