Swarm Intelligence Algorithm of Traffic
- Authors: Bobrovskaya O.P.1,2, Gavrilenko T.V.1,2, Galkin V.A.1,2
-
Affiliations:
- Surgut State University
- Surgut Branch of the Research Institute for System Research of the Russian Academy of Sciences
- Issue: No 4 (2023)
- Pages: 58-70
- Section: Computational Intelligence
- URL: https://journals.rcsi.science/2071-8594/article/view/269744
- DOI: https://doi.org/10.14357/20718594230406
- EDN: https://elibrary.ru/SJCXCN
- ID: 269744
Cite item
Full Text
Abstract
The problem of modeling the routes of self-driving vehicles in a traffic flow in which there are no collisions is being solved. A new swarm algorithm based on a microscopic model of traffic flow is proposed, which ensures the movement of agents without collisions. Changes in several optimality criteria during the operation of the algorithm are considered, such as: average speed of agents, throughput, number of lane changes. The boundaries of the effective values of the hyperparameters of the algorithm are estimated. At certain density parameters and push/pull coefficients in the traffic flow, free flow and an improvement in the values of the optimization criteria are observed.
About the authors
Olga P. Bobrovskaya
Surgut State University; Surgut Branch of the Research Institute for System Research of the Russian Academy of Sciences
Author for correspondence.
Email: o-bobrovskaya@mail.ru
Engineer; Teaching Assistant
Russian Federation, Surgut; SurgutTaras V. Gavrilenko
Surgut State University; Surgut Branch of the Research Institute for System Research of the Russian Academy of Sciences
Email: taras.gavrilenko@gmail.com
Candidate of Technical Sciences, Associate Professor; Deputy Director
Russian Federation, Surgut; SurgutValery A. Galkin
Surgut State University; Surgut Branch of the Research Institute for System Research of the Russian Academy of Sciences
Email: val-gal@yandex.ru
Doctor of Physical and Mathematical Sciences, Professor of the Department of Applied Mathematics; Director
Russian Federation, Surgut; SurgutReferences
- Kuznecov A.V. Kratkij obzor mnogoagentnyh modelej [Brief overview of multi-agent models]. Upravlenie bol'shimi sistemami: sbornik trudov [Large Systems Management: Proceedings]. 2018. V. 71. P. 6–44.
- Kravchenko P.S., Omarova G.A. Mikroskopicheskie matematicheskie modeli transportnyh potokov. Analiticheskij obzor [Microscopic mathematical models of traffic flows. Analytical review] // Problemy informatiki [Problems of Informatics]. 2014. V. 1. No 22. P. 24–31. URL: https://cyberleninka.ru/article/n/mikroskopicheskie-matematicheskie-modeli-transportnyh-potokov-analiticheskiy-obzor (accessed January 24, 2023).
- Chetverushkin B. N., Trapeznikova M. A., Furmanov I. R., Churbanov N. G. Makroi mikroskopicheskiye modeli dlya opisaniya dvizheniya avtotransporta na mnogopolosnykh magistralyakh [Macroand microscopic models for describing the movement of vehicles on multi-lane highways] // Trudy MFTI [Trudy MIPT]. 2010. V. 4. URL: https://cyberleninka.ru/article/n/makro-i-mikroskopicheskie-modeli-dlya-opisaniya-dvizheniya-avtotransporta-namnogopolosnyh-magistralyah (accessed January 31, 2023).
- Ma Z. at al. Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm and Evolutionary Computation. 2023. V. 77. P. 101248.
- Himani K., Girdhar A. Swarm Intelligence and Flocking Behavior. IJCA Proceedings on International Conference on Advancements in Engineering and Technology (ICAET 2015). 2015. V. 10. P. 9–12.
- Kuliev E.V., Shcheglov S.N., Pantelyuk E.A., Kulieva N.V. Adaptivnyj algoritm stai seryh volkov dlya resheniya zadach proektirovaniya [An adaptive algorithm for a pack of gray wolves for solving design problems] // Izvestiya YUFU. Tekhnicheskie nauki [Izvestiya SFU. Technical science]. 2017. V. 7. No. 192. URL: https://cyberleninka.ru/article/n/adaptivnyy-algoritm-stai-seryh-volkov-dlya-resheniya-zadach-proektirovaniya (accessed January 31, 2023).
- Dyulicheva Yu.Yu. Algoritmy roevogo intellekta i ih primenenie dlya analiza obrazovatel'nyh dannyh [Swarm intelligence algorithms and their application for the analysis of educational data] // Otkrytoe obrazovanie [Open education]. 2019. V. 23. No 5. P. 33-43.
- Alalvan A.R.D., Lihuta V. I., Kislov L. S. Nekotorye aspekty ispol'zovaniya algoritma kukushki v obuchenii i upravlenii robotami [Some Aspects of Using the Cuckoo Algorithm in Teaching and Controlling Robots] // Nauka. Informatizaciya. Tekhnologii. Obrazovanie: Materialy XII mezhdunarodnoj nauchno-prakticheskoj konferencii [Science. Informatization. Technologies. Education: Proceedings of the XII International Scientific and Practical Conference]. 2019. P. 402–408.
- Lebedev B.K., Lebedev O.B., Lebedeva E.M. Raspredelenie resursov na osnove gibridnyh modelej roevogo intellekta [Resource distribution based on hybrid models of swarm intelligence] // Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki [Scientific and technical bulletin of information technologies, mechanics and optics]. 2017. V. 17(6). P. 1063-1073.
- Carmelo J. A. at al. A novel search algorithm based on fish school behavior. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore. 2008. P. 2646–2651.
- Chastikova V.A., Druzhinina M.A., Kekalo A.S. Issledovanie effektivnosti algoritma poiska kosyakom ryb v zadache global'noj optimizacii [Investigation of the efficiency of the fish school search algorithm in the problem of global optimization] // Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2014. V. 4. URL: https://science-education.ru/ru/article/view?id=14142 (accessed October 21, 2022).
- Chen J., Cai H., Wang W. A new metaheuristic algorithm: car tracking optimization algorithm. Soft Comput. 2018. V. 22. P. 3857–3878.
- Savsani P., Savsani V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Applied Mathematical Modelling. 2016. V. 40. No 5–6. P. 3951–3978.
- Zhong Y., Lin J., Wang L., Zhang H. Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation. 2018. V. 42. P. 77-88.
- Martynova Yu.A., Martynov Ya.A. Formalizaciya zadachi organizacii marshrutnyh setej gorodskogo passazhirskogo transporta [Formalization of the task of organizing route networks of urban passenger transport]. Internetjournal «NAUKOVEDENIE». 2014. V. 6.
- Santwana P., Anjali M. P., Kedar H. Traffic Management Using Swarm Intelligence and Route Selection Using Android Application. International Journal of Engineering and Innovative Technology (IJEIT). 2015. V. 5. No 6. P. 59-63.
- Teodorović D. Swarm intelligence systems for transportation engineering: Principles and applications. Transportation Research Part C. 2008. V. 16. No 6. P. 651–667.
- Walker P., Saman A. A., Chakraborty N., Lewis M., Sycara K. Human Control of Robot Swarms with Dynamic Leaders. IEEE International Conference on Intelligent Robots and Systems. 2014. P. 1108–1113.
- Virágh C. et al. Flocking algorithm for autonomous flying robots. Bioinspiration & Biomimetics. 2014. V.9. No 2. P. 025012.
- Altshuler Y. Recent Developments in the Theory and Applicability of Swarm Search. Entropy. 2023 V. 25. No 5. P. 710.
- Operators and functioning of FSS // Fish School Search (FSS Algorithm): сайт. – URL: https://fbln.me/fss/operators/operators/ (accessed April 21, 2023).
- Bobrovskaya O. P., Gavrilenko T.V., Galkin V. A. Model' transportnogo potoka, osnovannaya na vzaimodeystvii chastits s potentsialom deystviya [Transport flow model based on interaction of particles with action potential] // Vestnik KRAUNC. Fiz.-mat. Nauki [Bulletin of KRAUNC. Phys. math. Sciences]. 2022. V. 40. No 3. P. 72-87.
Supplementary files
