Generation of a Fuzzy Classifier Rule Base for Diagnosing Parkinson's Disease from Handwritten Data

Cover Page

Cite item

Full Text

Abstract

Parkinson's disease is a neurodegenerative neurological disease which progression can be slowed by accurate and timely diagnosis. In this connection, the development of simple and accessible screening methods is relevant, one of which is the analysis of handwriting and drawing. The paper describes such a method based on the application of fuzzy classifier. The algorithm for formation of fuzzy rules bases, in which mountain clustering is applied after a parameters’ adjustment on concrete data, is offered. The Powell's optimization algorithm is chosen to find parameters. The balanced accuracy and the ratio of the number of rules to the number of training samples is used as the target function. The effectiveness of the proposed algorithm is compared with the classical k-means clustering algorithm and the extreme class feature algorithm.

About the authors

Marina B. Bardamova

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: 722bmb@gmail.com

Candidate of Technical Sciences, Senior Researcher

Russian Federation, Tomsk

Ilya A. Hodashinsky

Tomsk State University of Control Systems and Radioelectronics

Email: hodashn@rambler.ru

Doctor of Technical Sciences, Professor, Head of the Laboratory

Russian Federation, Tomsk

Yuri A. Shurygin

Tomsk State University of Control Systems and Radioelectronics

Email: yuriy.shurygin@tusur.ru

Doctor of Technical Sciences, Professor, Director of the Directorate for Administration and Strategic Development, Head of Department; Scientific Supervisor of the Research Institute of Automatics and Electromechanics

Russian Federation, Tomsk

Konstantin S. Sarin

Tomsk State University of Control Systems and Radioelectronics

Email: sarin.konstantin@mail.ru

Candidate of Technical Sciences, Associate Professor, Senior Researcher

Russian Federation, Tomsk

Mikhail O. Svetlakov

Tomsk State University of Control Systems and Radioelectronics

Email: svetlakov.m4@gmail.com

Assistant, Junior Researcher

Russian Federation, Tomsk

References

  1. Petrovsky A.B., Pronichkin S.V., and Shepelev G.I. Informacionno-logicheskaya model nauchno-tekhnologicheskogo potenciala preventivnoj i personalizirovannoj mediciny [Information-logical model of scientific and technological potential of preventive and personalized medicine] // Iskusstvenniy intellekt i prinyatie resheniy [Artificial Intelligence and Decision Making]. 2022. No.3. P. 21-35.
  2. Fuzzy classification methods-based diagnosis of Parkinson’s disease from speech test cases / N. K. Dastjerd [et al.] // Current Aging Science. 2019. Vol. 12. No. 2. P. 100-120.
  3. VOZ. Bolezn Parkinsona [WHO. Parkinson's disease] // Electronic resource. URL: https://www.who.int/ru/news- room/fact-sheets/detail/parkinson-disease (accessed 11.04.2022).
  4. Biometric data and machine learning methods in the diagnosis and monitoring of neurodegenerative diseases: a review / I.A. Hodashinsky [et al.] // Computer Optics. 2022. Vol. 46. No. 6. P. 988-1019.
  5. A survey of visual and procedural handwriting analysis for neuropsychological assessment / M. Moetesum [et al.] // Neural Computing and Applications. 2022. Vol. 34. P. 9561-9578.
  6. Wang L.-X., Mendel J.M. Generating fuzzy rules by learning from examples // IEEE Transactions on Systems, Man, and Cybernetics. 1992. Vol. 22. No. 6. P. 1414-1427.
  7. D’Andrea E., Lazzerini B. A hierarchical approach to multi-class fuzzy classifiers // Expert Systems with Applications. 2013. Vol. 40. No. 9. P. 3828-3840.
  8. Hodashinsky I.A., Sarin K.S. Otbor klassificiruyushchih priznakov s pomoshchyu populyacionnogo sluchajnogo poiska s pamyatyu [Selection of classifying features using population-based random search with memory] // Avtomatika i telemekhanika [Automation and telemechanics]. 2019. No. 2. P. 161-172.
  9. Isenkul M.E., Sakar B.E., Kursun O. Improved spiral test using digitized graphics tablet for monitoring Parkinson's disease // The 2nd International Conference on e-Health and Telemedicine. Istanbul. 2014. P. 171-175.
  10. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease / Drotar P. [et al.] // Artificial Intelligence in Medicine. 2016. Vol. 67. P. 39-46.
  11. Deep learning-aided parkinson’s disease diagnosis from handwritten dynamics / C.R. Pereira [et al.] // Proceedings of the 29th SIBGRAPI Conference on Graphics, Patterns and Images. Sao Paulo: IEEE. 2016. P. 340-346.
  12. Muthukaruppana S., Er M.J. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease // Expert Systems with Applications. 2012. Vol. 39. No. 14. P. 11657-11665.
  13. Abonyi J., Roubos J.A., Szeifert F. Data-driven generation of compact, accurate, and linguistically-sound fuzzy classifiers based on a decision-tree initialization // International Journal of Approximate Reasoning. 2003. Vol. 32. P. 1-21.
  14. Pulkkinen P., Koivisto H. Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms // International Journal of Approximate Reasoning. 2008. Vol. 48. P. 526-543.
  15. Hodashinsky I.A., Meh М.А. Postroenie nechetkogo klassifikatora na osnove metodov garmonicheskogo poiska [Fuzzy classifier design using harmonic search methods] // Programmirovanie [Programming]. 2017. No. 1. P. 54-65.
  16. Wang D., Zeng X.-J., Keane J.A. A structure evolving learning method for fuzzy systems // Evolving Systems. 2010. Vol. 1. P. 83–95.
  17. Wang D., Zeng X.-J., Keane J.A. A simplified structure evolving method for Mamdani fuzzy system identification and its application to high-dimensional problems // Information Sciences. 2013. Vol. 220. P. 110-123.
  18. Ye Q., Xia Y., Yao Z. Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system // Computational and Mathematical Methods in Medicine. Vol. 2018. Article ID 9831252.
  19. Salimi-Badr A., Hashemi M., Saffari H. A type-2 neurofuzzy system with a novel learning method for Parkinson’s disease diagnosis // Applied Intelligence. 2022.
  20. Chiu S. Fuzzy model identification based on cluster estimation // Journal of Intelligent and Fuzzy Systems. 1994. Vol. 2. No 3. P. 267-278.
  21. Powell M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives // The Computer Journal. 1964. Vol. 7. No. 2. P. 155-162.
  22. Computational analysis of open loop handwriting movements in Parkinson's disease: a rapid method to detect dopamimetic effects / T.E. Eichhorn [et al.] // Movement Disorders. 1996. Vol. 11. No. 3. P. 289-297.
  23. Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues / А. Parziale [et al.] // Artificial intelligence in medicine. 2021. Vol. 111. P. 101984.
  24. Koryshev N., Hodashinsky I., Shelupanov A. Building a fuzzy classifier based on whale optimization algorithm to detect network intrusions // Symmetry. 2021. Vol. 13. No. 7. P. 1211.
  25. Bardamova M., Hodashinsky I. Formation of fuzzy classifier structure by a combination of the class extremum algorithm and the shuffled frog leaping algorithm for imbalanced data with two classes // Optoelectronics Instrumentation and Data Processing. 2021. Vol. 57. No. 4. P. 378-387.
  26. Results of generating the structure of a fuzzy classifier for the diagnosis of Parkinson's disease // Electronic resource. URL: https://www.researchgate.net/publication/367561819_Results_of_generating_the_structure_of_a_fuzzy_classifier_for_the_diagnosis_of_Parkinson's_disease (accessed 31.01.2023).
  27. Robnik-Sikonja M., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF // Machine Learning, 2003. Vol. 53. No. 1-2. P. 23-69.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».