A fast optimization technique for the regression estimation of the probability density of a one-dimensional random variable
- Authors: Lapko A.V.1,2, Lapko V.A.1,2
-
Affiliations:
- Institute of Computational Modelling SB RAS
- Reshetnev Siberian State University of Science and Technology
- Issue: No 2 (2024)
- Pages: 123-131
- Section: Analysis of Signals, Audio and Video Information
- URL: https://journals.rcsi.science/2071-8594/article/view/265527
- DOI: https://doi.org/10.14357/20718594240210
- EDN: https://elibrary.ru/CEACUQ
- ID: 265527
Cite item
Full Text
Abstract
A method is proposed for the fast selection of the blurriness coefficient of the kernel functions of the regression estimation of the probability density of a one-dimensional random variable. For a fast selection, the results of studying the asymptotic properties of the regression estimate of the probability density are used. A method for estimating the components of the optimal blurriness coefficient is proposed. The method of computational experiment is used to analyze the effectiveness of the proposed approach for a fast selection of the blurriness coefficient of the regression estimate of the probability density for a family of lognormal distribution laws for different volumes of initial data, and promising procedures for sampling the range of values of a random variable.
About the authors
Alesander V. Lapko
Institute of Computational Modelling SB RAS; Reshetnev Siberian State University of Science and Technology
Author for correspondence.
Email: lapko@icm.krasn.ru
Doctor of Technical Sciences, Professor, Honored Scientist of the Russian Federation, Honorary Worker of Higher Professional Education of the Russian Federation, Chief Researcher, Professor of the Department of Space Facilities and Technologies
Russian Federation, Krasnoyarsk; KrasnoyarskVasiliy A. Lapko
Institute of Computational Modelling SB RAS; Reshetnev Siberian State University of Science and Technology
Email: valapko@yandex.ru
Doctor of Technical Sciences, Professor, Leading Researcher, Head of the Department of Space Facilities and Technologies
Russian Federation, Krasnoyarsk; KrasnoyarskReferences
- Lapko A.V., Lapko V.A. Yadernyye otsenki plotnosti veroyatnosti i ikh primeneniye [Kernel probability density estimates and their application]. Krasnoyarsk: Reshetnev University Publs, 2021. P. 308.
- Lapko A.V., Lapko V.A. Regression estimate of the multidimensional probability density and its properties // Optoelectronics, Instrumentation and Data Processing. 2014. V. 50. No 2. P. 148–153. doi: 10.3103/S875669901402006X.
- Rudemo M. Empirical choice of histogram and kernel density estimators // Scandinavian Journal of Statistics. 1982. V. 9. No 2. P. 65-78. jstor: 4615859.
- Hall P. Large-sample optimality of least squares cross-validation in density estimation // Annals of Statistics. 1983. V. 11. No 4. P. 1156-1174.
- Bowman A.W. An alternative method of cross-validation for the smoothing of density estimates // Biometrika. 1984. V. 71. No 2. P. 353-360. doi: 10.1093/BIOMET/71.2.353.
- Jiang M., Provost S.B. A hybrid bandwidth selection methodology for kernel density estimation // Journal of Statistical Computation and Simulation. 2014. V. 84. No 3. P. 614- 627. doi: 10.1080/00949655.2012.721366.
- Dutta S. Cross-validation revisited // Communications in Statistics - Simulation and Computation. 2016. V. 45. No 2. P. 472-490. doi: 10.1080/03610918.2013.862275.
- Silverman B.W. Density estimation for statistics and data analysis. London: Chapman and Hall, 1986. P. 175.
- Scott D.W. Multivariate density estimation: Theory, Practice, and Visualization. New Jersey: John Wiley & Sons, 2015. P. 384.
- Sheather S., Jones M. A reliable data-based bandwidth selection method for kernel density estimation // Journal of the Royal Statistical Society. Series B. 1991. V. 53. No 3. P. 683-690. doi: 10.1111/j.2517-6161.1991.tb01857.x.
- Sheather S.J. Density estimation // Statistical Science. 2004. V. 19. No 4. P. 588-597. doi: 10.1214/088342304000000297.
- Heinhold I., Gaede K.W. Ingeniur statistic. München – Wien: Springler Verlag, 1964. P. 352.
- Lapko A.V., Lapko V.A. Optimal selection of the number of sampling intervals in domain of variation of a one dimensional random variable in estimation of the probability density // Measurement Techniques. 2013. V. 56. No 7. P. 763–767. doi: 10.1007/s11018-013-0279-x.
- Parzen E. On estimation of a probability density function and mode // Annals of Mathematical Statistics. 1962. V. 33. No 3. P. 1065-1076. doi: 10.1214/aoms/1177704472.
- Epanechnikov V.A. Non-parametric estimation of a multivariate probability density // Theory of Probability & Its Applications. 1969. V. 14. No 1. P. 156-161. doi: 10.1137/1114019.
- Lapko A.V., Lapko V.A., Bakhtina A.V. Bystryy vybor koeffitsiyentov razmytosti yadernoy otsenki plotnosti veroyatnosti dlya semeystva odnomernykh lognormal'nykh zakonov raspredeleniya [Fast selection of the blur coefficients of the kernel probability density estimation for a family of one-dimensional lognormal distribution laws] // Informatika i sistemy upravleniya [Informatics and control systems]. 2022. V. 71. No 1. P. 90-100. doi: 10.22250/18142400_2022_71_1_90.
- Gradov V.M., Ovechkin G.V., Ovechkin P.V., Rudakov I.V. Komp'yuternoye modelirovaniye [Computer modelling]. Moscow: INFRA-M Publs, 2019. P. 264.
Supplementary files
