Hybrid algorithm for mixed multi-objective optimization «cuckoo search» with genetic crossover operator
- 作者: Sarin K.S.1
-
隶属关系:
- Tomsk State University of Control Systems and Radioelectronics
- 期: 编号 2 (2024)
- 页面: 87-105
- 栏目: System, Evolutionary, Cognitive Modeling
- URL: https://journals.rcsi.science/2071-8594/article/view/265430
- DOI: https://doi.org/10.14357/20718594240207
- EDN: https://elibrary.ru/VQYBOD
- ID: 265430
如何引用文章
全文:
详细
The article proposes a mixed-integer multi-objective optimization algorithm based on the cuckoo search metaheuristic and the genetic crossover operator. Search in discrete space is carried out using a genetic operator, and in continuous space using a metaheuristic strategy. Performance was as- sessed using modified ZDT and DTLZ tests with mixed variables. The experimental results showed the high efficiency of the proposed algorithm on complex estimates of convergence and diversity.
作者简介
Konstantin Sarin
Tomsk State University of Control Systems and Radioelectronics
编辑信件的主要联系方式.
Email: sarin.konstantin@mail.ru
Candidate of technical sciences, docent, Assistant Professor, Senior Researcher
俄罗斯联邦, Tomsk参考
- Shrestha A.K., Mahmood A. Review of deep learning algorithms and architectures // IEEE Access. 2019. V. 7. P. 53040-53065.
- Alzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions // Journal of Big Data. 2021. V. 8. No 53. P. 1-74.
- Sarin K.S. Nechetkiy klassifikator tipa Min-Max: obzor [Fuzzy Min-Max Сlassifier: Review] // Doklady TUSUR [Proceedings of TUSUR]. 2023. V. 26. No 1. С. 65-75.
- Hodashinsky I.A., Sarin K.S. Metodika postroyeniya kompaktnykh i tochnykh nechetkikh sistem tipa Takagi- Sugeno [Technique for designing accurate and compact Takagi–Sugeno fuzzy systems] // Doklady TUSUR [Proceedings of TUSUR]. 2016. V. 19. No 1. С. 50-56.
- Bardamova M.B., Buymov A.G., Tarasenko V.F. Sposoby adaptatsii algoritma prygayushchikh lyagushek k binarnomu prostranstvu poiska pri reshenii zadachi otbora priznakov [Methods for adapting the leaping frog algorithm to the binary search space when solving the feature selection problem] // Doklady TUSUR [Proceedings of TUSUR]. 2020. V. 23. No 4. С. 57-62.
- Cerulli M., Pelegrin M., Cafieri S., D’Ambrosio C., Rey D. Aircraft Conflict Resolution // Encyclopedia of Optimization. Ed. by P.M. Pardalos, O.A. Prokopyev. Cham: Springer, 2023. P. 1-8.
- Characklis G., Kirsch B., Ramsey J., Dillard K., Kelley C. Developing portfolios of water supply transfers // Water Resources Research. 2006. V. 42. No 5. P. 1-14.
- Chen X., Chen X., Kelley C., Xu F., Zhang Z. A smoothing direct search method for Monte Carlo-based bound constrained composite nonsmooth optimization // SIAM Journal on Scientific Computing. 2018. V. 40. No 4. P. A2174- A2199.
- Habib M., Aljarah I., Faris H., Mirjalili S. Multi-objective particle swarm optimization: theory, literature review, and application in feature Selection for medical diagnosis // Evolutionary Machine Learning Techniques, Mirjalili S.,Faris H., Aljarah I. (eds). Algorithms for Intelligent Systems. Springer, Singapore. 2020. P. 175-201.
- Rani J.A.E., Kirubakaran E., Juliet S., Zoraida B.S.E. Supervised hybrid particle swarm optimization with entropy (PSO-ER) for feature selection in health care domain // International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing. Springer, Singapore. 2022. V. 1387. P. 797-805.
- Burachik R.S., Kaya C.Y., Rizvi M.M. Algorithms for generating Pareto fronts of multi-objective integer and mixedinteger programming problems // Engineering optimization. 2022. V. 54. No 8. P. 1413-1425.
- Wang F., Zhang H., Zhou A. A particle swarm optimization algorithm for mixed-variable optimization problems // Swarm and evolutionary computation. 2021. V. 60. P. 100808.
- Hodashinsky, I. A. Methods for Improving the Efficiency of Swarm Optimization Algorithms. A Survey // Automation and Remote Control. 2021. V. 82. No 6. P. 935-967.
- Handbook of methaheuristics. Ed. by M. Gendreau, J.-Yv. Potvin. International Series in Operations Research & Management Science, 272. Cham: Springer, 2019. P. 604.
- Eichfelder G., Stein O., Warnow L. A Solver for multi- objective mixed-integer convex and nonconvex optimization // Journal of optimization theory and applications. 2023. V. 200. P. 1-31.
- Black box optimization, machine learning, and no-free lunch theorems. Ed. by P.M. Pardalos, V. Rasskazova, M.N. Vrahatis. Springer optimization and its applications,170. Cham: Springer, 2021. 388 p.
- Deb K., Agrawal S., Pratap A., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II // IEEE Transactions on Evolutionary Computation. 2002. V. 6. P. 182-197.
- Murata T., Ishibuchi H., Tanaka H. Multi-objective genetic algorithm and its applications to flowshop scheduling // Computers and industrial engineering. 1996. V. 30. No 4. P. 957-968.
- Wang W., Li K., Jalil H., Wang H. An improved estimation of distribution algorithm for multi-objective optimization problems with mixed-variable // Neural Computing and Applications. 2022. V. 34. P. 19703-19721.
- Estimation of distribution algorithms: genetic algorithms and evolutionary computation. Ed. by P. Larranaga, J. A. Lozano. A new tool for evolutionary computation, 2. New York: Springer, 2002. 383 p.
- Bengoetxea E. Estimation of distribution algorithms: A new evolutionary computation approach for graph matching problems // Energy minimization methods in computer vision and pattern recognition. Ed. by M. Figueiredo, J. Zerubia, A.K. Jain. Lecture notes in computer science, 2134. Berlin: Springer, 2001. P. 454-469.
- Zhang Q., Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition // IEEE Transactions on evolutionary computation. 2007. V. 11. No 6. P. 712-731.
- Tong W., Chowdhury S., Messac A. A multi-objective mixed-discrete particle swarm optimization with multi-domain diversity preservation // Structural and multidisciplinary optimization. 2016. V. 53. P. 471-488.
- Chowdhury S., Tong W., Messac A., Zhang J. A mixed- discrete particle swarm optimization algorithm with explicit diversity-preservation // Structural and multidisciplinary optimization. 2013. V. 47. P. 367-388.
- Mokarram V., Banan M.R. A new PSO-based algorithm for multi-objective optimization with continuous and discrete design variables // Structural and multidisciplinary optimization. 2018. V. 57. P. 509-533.
- Coello Coello C.A., Lechuga M.S. MOPSO: A proposal for multiple objective particle swarm optimization // Proceedings of the 2002 Congress on Evolutionary Computation, CEC IEEE. 2002. P. 1051-1056.
- Kennedy J., Eberhart R.C. A discrete binary version of the particle swarm algorithm. // International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. IEEE. 1997. P. 4104-4108.
- Yang X.-S., Deb S. Engineering optimisation by cuckoo search // International Journal Mathematical Modelling and Numerical Optimisation. 2010. V. 1. No 4. P. 330-343.
- Yang X.-S., Deb S. Cuckoo search: recent advances and applications // Neural Computing and Applications. 2014. V. 24. No 1. P. 169-174.
- Tang J., Liu G., Pan Q.T. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends // IEEE/CAA Journal of Automatica Sinica. 2021. V. 8. No 10. P. 1627-1643.
- Viswanathan G., Afanasyev V., Buldyrev S., Havlin S. et al. Levy flights in random searches // Physica A: Statistical Mechanics and its Applications. 2000. V. 282. P. 1-12.
- Viswanathan G., Bartumeus F., Buldyrev S., Catalan J. et al. Levy flight random searches in biological phenomena // Physica A: Statistical Mechanics and its Applications. 2002. V. 314. P. 208-213.
- Mantegna R.N. Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes // Physical Review E. 1994. V. 49. No 5. P. 4677-4683.
- Yang X.-S. Genetic Algorithms // Nature-Inspired Optimization Algorithms (Second Edition). Academic Press, 2021. P. 91-100.
- Zitzler E., Deb K., Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results // Evolutionary Computation. 2000. V. 2. P. 173-195.
- Deb K., Thiele L., Laumanns M., Zitzler E. Scalable test problems for evolutionary multiobjective optimization // Evolutionary Multiobjective Optimization, Theoretical Advances and Applications. Ed. by Abraham A., Jain L., Goldberg. Advanced Information and Knowledge Processing. London: Springer, 2005. P. 105-145.
- Zhang Q., Zhou A., Jin Y. RM-MEDA: A regularity modelbased multiobjective estimation of distribution algorithm // IEEE Transactions on Evolutionary Computation. 2008. V. 12. No 1. P. 41-63.
- Herrera F., Lozano M., Verdegay J.L. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis // Artificial Intelligence Review. 1998. V. 12. P. 265-312.
- Glantz S.A. Primer of biostatics. New York: McGraw-Hill, 1997. 473p.
补充文件
