The Role of the Commensal Skin Microbiota in the Processes of Reparative Regeneration of Soft Tissue Wounds

Capa

Citar

Texto integral

Resumo

The issues of soft tissue wound management and combating complications of the wound process caused by colonization of the wound bed by pathogenic microflora are constantly in the field of view of surgical specialists. The steady growth of injuries accompanied by soft tissue damage and spread of antibiotic-resistant microflora prompt clinicians to preserve the body's natural defenses in order to improve tissue repair processes, thereby reducing hospital stay and achieving rational use of the economic resources of a health care facility. The article presents generalized data of scientific research arguing the significant contribution of representatives of the commensal skin microbiota to the processes of reparative regeneration of soft tissue wounds.

Sobre autores

Alexander Tulupov

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: tulupov.a.a@yandex.ru
ORCID ID: 0000-0001-6567-7803

junior researcher

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Vladimir Beschastnov

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: vvb748@mail.ru
ORCID ID: 0000-0002-9332-3858

M.D., associate professor, senior researcher

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18.

Igor Pogodin

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: pogigevg@yandex.ru
ORCID ID: 0000-0002-7008-4962

Traumatologist-orthopedist, head of the burn department (adults)

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Irina Shirokova

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: shirokova.i@yandex.ru
ORCID ID: 0000-0002-8387-6344

Ph.D, Head of the Bacteriological Laboratory of the RI of Preventive Medicine; associate professor of the department of epidemiology, microbiology and evidence-based medicine

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Elena Dudareva

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: dudareva.lena2010@yandex.ru
ORCID ID: 0000-0002-7569-4866

Bacteriologist

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Kirill Andryukhin

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Email: johnny.andr@mail.ru
ORCID ID: 0000-0002-6178-0202

4th year student

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Emil Badikov

University clinic Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health

Autor responsável pela correspondência
Email: docroutruyesou-492@yopmail.com
ORCID ID: 0000-0001-9844-5638

Junior researcher

Rússia, 603155, Russian Federation, Nizhniy Novgorod, Verhne-Volzhskaya naberezhnaya Str., 18

Bibliografia

  1. Grice EA, Serge JA. Interaction of Microbiome and the Innate Immune Response in Chronic Wounds. Med Biol. 2012;946:55-68. doi: 10.1007/978-1-4614-0106-3_4.
  2. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337.
  3. Williams H, Campbell L, Crompton RA, Mcbain AJ, Cruickshank SM, Hardman MJ, et al. Microbial Host Interactions and Impaired Wound Healing in Mice and Humans: Defining a Role for BD14 and NOD2. J Invest Dermatol. 2018;138(10):2264-2274. doi: 10.1016/j.jid.2018.04.014.
  4. Loesche M, Gardner SE, Kalan L, Horwinski J, Zheng Q, Hodkinson BP, et al. Temporal stability in chronic wound microbiota is associated with poor healing. J Invest Dermatol. 2017;137(1):237-244. doi: 10.1016/j.jid.2016.08.009.
  5. Misic AM, Gardner SE, Grice EA. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. Adv Wound Care (New Rochelle). 2014;3(7):502-510. doi: 10.1089/wound.2012.0397.
  6. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
  7. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577-594. doi: 10.1053/j.gastro.2007.11.059.
  8. Gill SR, Pop M, Deboy RT, Ecburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355-1359 doi: 10.1126/science.1124234.
  9. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–1050. doi: 10.1101/gr.075549.107.
  10. Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Serge JA. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi: 10.1038/nature13786.
  11. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009; 326(5960):1694–1697. doi: 10.1126/science.1177486.
  12. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324 (5931):1190—2. doi: 10.1126/science.1171700.
  13. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244—53. doi: 10.1038/nmicro2537.
  14. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442—55. doi: 10.1111/j.1365-2133.2008.08437.x.
  15. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337.
  16. Misic AM, Gardner SE, Grice EA. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. Adv Wound Care (New Rochelle). 2014;3(7):502–510. doi: 10.1089/wound.2012.0397.
  17. Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PM, Saulnier DM. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol. 2012;13(11):R101. doi: 10.1186/gb-2012-13-11-r101.
  18. Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J. Interactions of methicillin resistant Staphylococcus aureus USA 300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One. 2013;8(2):e56846. doi: 10.1371/journal.pone.0056846.
  19. Harrison OJ, Linehan JL, Shih HY, Bouladoux N, Han SJ, Smelkinson M. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science. 2019;363(6422):eaat6280. doi: 10.1126/science.aat6280.
  20. Di Domizio J, Belkhodja C, Chenuet P, Fries A, Murray T, Mondéjar PM. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin. Nat Immunol. 2020;(9):1034-1045. doi: 10.1038/s41590-020-0721-6.
  21. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-108. doi: 10.1038/nature14052.
  22. Gonzalez CD, Ledo C, Cela E, Stella I, Xu C, Ojeda DS. The good side of inflammation: Staphylococcus aureus proteins SpA and Sbi contribute to proper abscess formation and wound healing during skin and soft tissue infections. Biochim Biophys Acta Mol Basis Dis. 2019;1865(10):2657-2670. doi: 10.1016/j.bbadis.2019.07.004.
  23. Paharik AE, Parlet CP, Chung N, Todd DA, Rodriguez EI, Van Dyke MJ. Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. Cell Host Microbe. 2017;22(6):746-756.e5. doi: 10.1016/j.chom.2017.11.001.
  24. Götz F, Perconti S, Popella P, Werner R, Schlag M. Epidermin and gallidermin: Staphylococcal lantibiotics. Int J Med Microbiol. 2014;304(1):63-71. doi: 10.1016/j.ijmm.2013.08.012.
  25. Wang G, Sweren E, Liu H, Wier E, Alphonse MP, Chen R. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe. 2021;29(5):777-791. doi: 10.1016/j.chom.2021.03.003.
  26. Palmieri TL, Levine S, Schonfeld-Warden N, O'Mara MS, Greenhalgh DG. Hypothalamic-pituitary-adrenal axis response to sustained stress after major burn injury in children. J Burn Care Res. 2006;27(5):742-8. doi: 10.1097/01.BCR.0000238098.43888.07.
  27. Sedowofia K, Barclay C, Quaba A, Smith A, Stephen R, Thomson M. The systemic stress response to thermal injury in children. Clin Endocrinol (Oxf). 1998;49(3):335-41. doi: 10.1046/j.1365-2265.1998.00553.x.
  28. Stojadinovic O, Gordon KA, Lebrun E, Tomic-Canic M. Stress-Induced Hormones Cortisol and Epinephrine Impair Wound Epithelization. Adv Wound Care (New Rochelle). 2012;1(1):29-35. doi: 10.1089/wound.2011.0320.
  29. Romana-Souza B, Otranto M, Vieira AM, Filgueiras CC, Fierro IM, Monte-Alto-Costa A. Rotational stress-induced increase in epinephrine levels delays cutaneous wound healing in mice. Brain Behav Immun. 2010;24(3):427-37. doi: 10.1016/j.bbi.2009.11.012.
  30. Borrel V, Thomas P, Catovic C, Racine PJ, Konto-Ghiorghi Y, Lefeuvre L. Acne and Stress: Impact of Catecholamines on Cutibacterium acnes. Front Med (Lausanne). 2019;6:155. doi: 10.3389/fmed.2019.00155.
  31. Stratford AF, Zoutman DE, Davidson JS. Effect of lidocaine and epinephrine on Staphylococcus aureus in a guinea pig model of surgical wound infection. Plast Reconstr Surg. 2002;110(5):1275-9. doi: 10.1097/01.PRS.0000025427.86301.8A.
  32. Luqman A, Nega M, Nguyen MT, Ebner P, Götz F. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Rep. 2018;22(2):535-545. doi: 10.1016/j.celrep.2017.12.058.
  33. Luqman A, Ebner P, Reichert S, Sass P, Kabagema-Bilan C, Heilmann C, et al. A new host cell internalisation pathway for SadA-expressing staphylococci triggered by excreted neurochemicals. Cell Microbiol. 2019;21(9):e13044. doi: 10.1111/cmi.13044.
  34. Ma G, Bavadekar SA, Schaneberg BT, Khan IA, Feller DR. Effects of synephrine and beta-phenethylamine on human alpha-adrenoceptor subtypes. Planta Med. 2010;76(10):981-6. doi: 10.1055/s-0029-1240884.
  35. Canesso MC, Vieira AT, Castro BR, Schirmer GA, Cisalpino D, Martins FS, et al. Barcelos skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014;193(10):5171-5180. doi: 10.4049/jimmunol.1400625.
  36. McIntyre MK, Peacock TJ, Akers KS, Burmeister DM. Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS One. 2016;11(11):e0166176. doi: 10.1371/journal.pone.0166176.
  37. Wang J, Dodd C, Shankowsky HA, Scott PG, Tredget EE and Wound Healing Research Group. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Invest. 2008;88(12):1278-90. doi: 10.1038/labinvest.2008.101.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).