A New n-Alkane Hydroisomerization Catalyst Modified with Nanosized Molybdenum Carbides and Its Catalytic Properties in Diesel Fraction Hydroisomerization. Part III: Comparison of the Catalytic Properties of Bifunctional SAPO-31 and SAPO-11 Based Catalysts
- Authors: Echevskii G.V.1, Toktarev A.V.1, Aksenov D.G.1, Kodenev E.G.1
-
Affiliations:
- Boreskov Institute of Catalysis, Siberian Branch
- Issue: Vol 10, No 1 (2018)
- Pages: 57-61
- Section: Domestic Catalysts
- URL: https://journals.rcsi.science/2070-0504/article/view/202739
- DOI: https://doi.org/10.1134/S207005041801004X
- ID: 202739
Cite item
Abstract
Part III of this work continues the study of the catalytic properties of new molybdenum carbide based hydroisomerization catalysts, which are resistant to sulfur compounds and allow the synthesis of waxy diesel fuels with the same quality characteristics as those of platinum-containing catalysts. The catalytic properties of such bifunctional catalysts as 7%Mo2C/SAPO-31 (LCCH-2) and 7%Mo2C/SAPO-11 (LCCH-2-2) in diesel fraction hydroisomerization in the temperature range of 320–400°C are compared. It is shown that LCCH-2 ensures a higher yield of the hydroisomerized diesel fraction with a lower freezing point as compared to LCCH-2-2 at temperatures above 320°C. The ratio between mono- and di-isomers in reaction products is analyzed. It is concluded that SAPO-31 based catalyst is more selective to the formation of terminal monosubstituted alkanes than SAPO-11 based catalyst. The resistance of both catalysts to deactivation with coke deposits (tests over 100 h at 320 and 360°C in hydroisomerization) is studied. It is established that LCCH-2-2 is less resistant to deactivation than LCCH-2. These findings are due to differences in acidity, the degree of uniformity in the distribution of acidic hydrogenating/dehydrogenating sites in the catalysts, and the structural type of their acidic supports.
About the authors
G. V. Echevskii
Boreskov Institute of Catalysis, Siberian Branch
Author for correspondence.
Email: egv@catalysis.ru
Russian Federation, Novosibirsk, 630090
A. V. Toktarev
Boreskov Institute of Catalysis, Siberian Branch
Email: egv@catalysis.ru
Russian Federation, Novosibirsk, 630090
D. G. Aksenov
Boreskov Institute of Catalysis, Siberian Branch
Email: egv@catalysis.ru
Russian Federation, Novosibirsk, 630090
E. G. Kodenev
Boreskov Institute of Catalysis, Siberian Branch
Email: egv@catalysis.ru
Russian Federation, Novosibirsk, 630090
Supplementary files
