Catalytic Redox Transformations in Rock Matrices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The properties of catalytic systems based on iron oxide and inorganic matrices of oil-bearing rocks (basalt, clay, sandstone) in the decomposition of ammonium nitrate, oxidation of methane, and hydrocracking of asphaltenes were studied. The catalytic systems were iron oxide (hematite with a particle size of D = 11.0–20 nm, preparation temperature 453–473 K) fixed on matrices during co-hydrolysis of carbamide and iron chloride under hydrothermal conditions at temperatures of T = 433–473 K and pressures of 0.6–1.6 MPa. The iron oxide catalysts based on basalt and clay were most active in deep oxidation of methane (at 773 K, \({X_{C{H_4}}}\) = 83% and 72.9%, respectively); the Fe2O3/basalt and Fe2O3/sandstone systems were more active in the decomposition of ammonium nitrate. In hydrocracking of asphaltenes to maltenes, the catalyst activity decreased in the series Fe2O3/basalt > Fe2O3/clay > Fe2O3/sandstone, the iron oxide catalysts on clay being most selective. The obtained experimental data confirm that natural materials (oil-bearing rocks: basalt, clay, and sandstone) may be used for the development of catalytic systems for reactions in oil beds and of advanced technologies for increasing the oil recovery.

Sobre autores

N. Dobrynkin

Boreskov Institute of Catalysis, Siberian Branch

Autor responsável pela correspondência
Email: dbn@catalysis.ru
Rússia, Novosibirsk, 630090

M. Batygina

Boreskov Institute of Catalysis, Siberian Branch

Email: dbn@catalysis.ru
Rússia, Novosibirsk, 630090

A. Noskov

Boreskov Institute of Catalysis, Siberian Branch

Email: dbn@catalysis.ru
Rússia, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018