Justification of Godunov’s scheme in the multidimensional case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The classical Godunov scheme for the numerical solution of 3D gas dynamics equations is justified in the multidimensional case. An estimate is obtained for the error induced by replacing the exact solution of the multidimensional discontinuity breakup problem (known as the Riemann problem) with the solution of the 1D problems with the data on the left and right of the interface of each cell without considering the complicated flow in the neighborhood of the cells’ vertices. It is shown that, in the case of plane interfaces, the error has the first order of smallness in the time step and the approximate solution converges to the solution of semidiscrete equations as the time step vanishes. In fact, the time integration of these equations using the explicit Euler method represents the Godunov scheme.

Sobre autores

V. Tishkin

Keldysh Institute of Applied Mathematics

Autor responsável pela correspondência
Email: v.f.tishkin@mail.ru
Rússia, Moscow

V. Zhukov

Keldysh Institute of Applied Mathematics

Email: v.f.tishkin@mail.ru
Rússia, Moscow

E. Myshetskaya

Keldysh Institute of Applied Mathematics

Email: v.f.tishkin@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016