Solution of the Fredholm Equation of the First Kind by the Mesh Method with the Tikhonov Regularization


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a linear ill-posed problem for the Fredholm equation of the first kind. For its regularization, Tikhonov’s stabilizer is implemented. To solve the problem, we use the mesh method, in which we replace integral operators by the simplest quadratures; and the differential ones, by the simplest finite differences. We investigate experimentally the influence of the regularization parameter and mesh thickening on the algorithm’s accuracy. The best performance is provided by the zeroth-order regularizer. We explain the reason of this result. We use the proposed algorithm for an applied problem of the recognition of two closely situated stars if the telescope instrument function is known. In addition, we show that the stars are clearly distinguished if the distance between them is ~0.2 of the instrumental function’s width and the values of brightness differ by 1–2 stellar magnitudes.

Авторлар туралы

A. Belov

Department of Physics, Moscow State University; Faculty of Physical, Mathematical and Natural Sciences, Peoples’ Friendship University of Russia (RUDN)

Хат алмасуға жауапты Автор.
Email: aa.belov@physics.msu.ru
Ресей, Moscow, 119991; Moscow, 117198

N. Kalitkin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kalitkin@imamod.ru
Ресей, Moscow, 125047

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019