Models of self-organizing artificial neural networks to identify stationary industrial sources of air pollution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A problem of identifying one particular or a few possible pollution sources that are responsible for the deterioration of the air quality as a result of exceeding the standards of the maximum permissible emissions is considered. A model problem for a group of spatially divided stationary permanent industrial sources is solved. A statement identifying the problem and a method to solve it using two architectures of artificial neural networks, Kohonen’s networks for learning vector quantization with fixed and adaptive structures, as well as adaptive resonance theory network for analog inputs (ART-2), are presented. The method consists of clustering the data provided by self-learning algorithms (unsupervised learning). Estimation equations are given and operation algorithms of Kohonen’s and adaptive resonance theory networks at different life cycle stages are described. The results of the solution of the model problem that are obtained using each network is performed are comparatively analyzed.

作者简介

S. Dudarov

Mendeleev University of Chemical Technology of Russia

编辑信件的主要联系方式.
Email: dudarov@muctr.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017