Second-order short characteristic method for solving the transport equation on a tetrahedron mesh


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper the second order approximation method on unstructured tetrahedral mesh for solving the transport equation with the help of short characteristics is constructed. The second-order interpolating polynomial is constructed from the values at the vertices of an illuminated face with the use of the values of the integrals of the required function along the edges of the same face. The value at the unilluminated vertex is obtained by integrating along the backward characteristic interval inside the tetrahedron from the interpolated value on the illuminated face. The accuracy of the method depends on the interpolation accuracy and on the source integration along the interval of the characteristic. In the case of piecewise constant approximation of the source part, the method is of the second order, assuming the solution to be sufficiently smooth. On test problems it is shown that the convergence rate of the method is slightly smaller than two in the case of smooth solutions, while this rate is smaller than one for nondifferentiable solution.

作者简介

E. Aristova

Keldysh Institute of Applied Mathematics; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: aristovaen@mail.ru
俄罗斯联邦, Moscow, 125047; Dolgoprudnyi, Moscow oblast, 141700

G. Astafurov

Moscow Institute of Physics and Technology

Email: aristovaen@mail.ru
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017